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CHAPTER 1 – INTRODUCTION 

(This chapter contains previously published material. See Appendix C) 

Anatomy of the human placenta 

Placenta in mammals is a transient organ that acts as the primary source of nutrition for 

the growing fetus during pregnancy (1, 3).  A fully developed human placenta is a circular disc-

like organ that is around 3-4cm in thickness and weighs approximately 500 grams.  The gross 

structure of the placenta is depicted in Figure 1.  The margins/ends of the placenta are marked by 

the chorionic plate (covered by the 

amnion) on the fetal side and the 

base plate on the maternal side. 

These plates fuse at the end of the 

disc structure of the placenta and 

form the fetal membranes that 

envelope the growing fetus.  The 

space between these plates is called 

the inter-villous space which is 

filled with maternal blood and consists of the placental villi – tree-like structures that stem out 

from the chorionic plate.  The placenta villi comprise the functional unit of the placenta and are 

primarily of two types: (i) the anchoring villi - that connected to the basal plate at their tips and 

anchor the placenta and (ii) the floating villi – that are not attached to the basal plate and remain 

floating in the intervillous space.  The core of the placental villi consists of capillary vessels that 

unite at the base of the placenta to form the umbilical artery and vein.  The villi bathe in the 

maternal blood that fills the intervillous space and thus absorb nutrients and exchange gases with 

the maternal blood.   

Figure 1: The anatomy of human placenta. Image adapted
from Benirschke & Kaufmann, 2005 (1) 
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Development of the human placenta 

The placenta develops from the outer 

cells of the blastocyst known as trophectoderm 

cells (Figure 2A).  The trophectoderm cells 

initiate implantation by attaching and eventually 

invading into the maternal endometrium (4).  

These cells proliferate and form the first wave 

of syncytiotrophoblast cells that invade into the 

maternal endometrium and embeds the 

blastocyst inside the uterine tissue on 

approximately 1 week after fertilization (Figure 

2B).  This layer of cells continues to proliferate. 

Around week 2, it starts forming fluid filled 

spaces called lacunae (Figure 2B).  Over the 

next few weeks of development, these lacunae merge to form one continuous intervillous space.  

The walls of the lacunae stretch from fetal side to the maternal decidual tissue and are called 

trabeculae (Figure 2D).  The trabeculae are essentially finger like projections of cytotrophoblast 

cell columns emerging from the embryonic side and are referred to as primary villi.  Over the 

course of weeks 3-7, these villi are penetrated by the extra-embryonic mesenchyme pushing the 

cytotrophoblast cells towards the periphery, giving rise to secondary villi.  The secondary villi 

also show presence of mesenchymal cells.  These cells give rise to the connective tissue inside 

the villous core and are precursors of the endothelial cells required for vascularization of the 

villi.  The secondary villi finally develop into tertiary (mesenchymal) villi that are covered with 

cytotrophoblasts and have a connective tissue core with developed placental blood vessels.  The 

Figure 2: Development of human placental
structures. Image adapted from (2).(A)Images
shows the attachment to and invasion of the
uterine tissue, (B) development of trophoblast
lacunae, (C) development of primary villi and
(D)formation of secondary villi. ICM: inner cell
mass, TE: trophectoderm, C: cytotrophoblast,
Me: extraembryonic mesenchyme, VS: inter-
villous space, EVT: extra-villous trophoblast. 
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basic structure of human placenta is thus established by week 8 (Figure 2D).  In the coming 

weeks, the tertiary villi further undergo rounds of trophoblast sprouting and branching 

angiogenesis to form a network of terminal villi – the most prominent form of villi found in term 

placenta. 

Human placental trophoblast lineages and their functions 

The cytotrophoblast cells proliferate and differentiate towards two major lineages.  The 

extra-villous trophoblast lineage that develops from the cytotrophoblast cell columns at the tips 

of  anchoring villi and the villous trophoblast lineage that cover the floating villi (5, 6). 

Extra-villous trophoblast lineage (EVT) 

These cells are primarily invasive in nature.  The proximal cells of the cytotrophoblast 

columns proliferate and differentiate towards this invasive lineage (7, 8).  They secrete several 

extracellular matrix degrading enzymes such as - matrix metalloproteinase 9,3,7, gelatinases - 

that help to breakdown of extracellular matrix and aid in their invasion into the maternal 

endometrial  tissue (9, 10).  The EVT lineage differentiates into subtypes with specialized 

functions: the interstitial subtype invades the decidua and secretes extracellular matrix 

components that help in anchoring the placenta whereas the endovascular subtype is involved 

with remodeling of uterine arteries (11).  The endovascular EVT’s migrate into the artery lumen 

and displace the endothelium and degrade the smooth muscle cells in the artery wall, which 

enables regulation of blood flow at the placental site (10, 12).  

The EVT cells also help evade the maternal immune mechanisms at the maternal- fetal 

interface (13, 14).  They refrain from expressing major histocompatibility complex proteins 

HLA-A, HLA-B and HLA-D- which are major stimulators of T-cell mediated graft rejection 

process.  They further express HLA-E which binds to CD94 receptors on the uterine natural 

killer (uNK) cells resulting in recognition of trophoblast cells as ‘self’, thus rendering the uNK 
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cells inactive (15-19).  They are also implicated in preventing fetal rejection by suppressing the 

local immune responsiveness and impairing responses to immune-activating cytokines present in 

the placental bed (19).  

Villous trophoblast lineage (VT) 

The VT cells are in direct contact with the maternal blood and form the exchange surface 

(1).  The VT must adapt to environmental changes to secure growth throughout pregnancy and 

ensure nutrient, gas and waste exchange, while generating the bulk of the placental hormones 

essential to facilitate growth throughout pregnancy (6).  The cytotrophoblasts under the surface 

of the villi can undergo either a symmetrical or an asymmetrical cell division.  Asymmetrical 

division results in the formation of a proliferative cell and a differentiating cell (20).  These 

differentiating cells exit the cell cycle and undergo cell fusion to from the multinucleate 

syncytiotrophoblast/syncytium, the exchange surface(21).  Over the course of the pregnancy, this 

layer undergoes apoptosis, is sloughed/shed off as syncytial knots and is constantly replenished 

by the underlying proliferative cytotrophoblast (22, 23).  The VT comprises of two 

compartments, an outer multinucleate fused layer that acts as the exchange surface and a lower 

proliferating cytotrophoblast layer that maintains a balance of proliferative: differentiating cells  

(24).    The process of proliferation, differentiation, fusion, apoptosis and shedding within the 

trophoblast layer is termed as “trophoblast turnover” which is crucial for VT function.  In 

addition to nutrient and gas exchange, the VT cells also participate in immune functions by 

expressing pattern recognition receptors like TLR (toll-like receptors) and NLR (Nod-like 

receptors) that recognize and bind to sequences unique to, and expressed on, the surface of 

microorganisms (25).  Thus, they also play an active role in control of pathogens that may 

compromise fetal wellbeing (26).  
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Diseases associated with placental development 

Proper development of the VT and EVT trophoblast lineages is crucial for placental 

function and dysregulation in both lineages has been associated with placental insufficiency 

syndromes.  Shallow invasion and reduced remodeling of uterine arteries will result in under-

perfusion of the placenta.  The reduced perfusion often translates into reduced exchange of 

nutrients resulting into growth restricted fetuses observed in intra-uterine growth restriction 

(IUGR).  Incomplete remodeling of uterine spiral arteries results in high velocity-unsteady blood 

flow which leads to hypoxia-reperfusion injury in the placenta.  These events expose the 

placental tissue to oxidative stress, trophoblast damage from shear stress and local thrombosis all 

associated with pathologies like PE (27, 28).  These features can result in various disease 

phenotypes; one hallmark being the release of proteins such as soluble fms-like tyrosine kinase 

(sFLT) into the maternal circulation. sFLT is an anti-angiogenic factor secreted by trophoblast 

cells and elevated level of sFLT have been observed in both human and animal models of PE and 

is often used as a marker for PE (29, 30).  In addition to abnormal trophoblast differentiation, 

elevated inflammation is a common feature observed in these pathologies (31-33). Increased 

placental inflammation due to oxidative stress and elevated placental cytokine release are both 

features associated with PE and IUGR placentae (31, 34, 35). Severe forms of these pathologies 

lead to preterm birth which is a leading cause of neonatal mortality and morbidity (2, 36, 37). 

Currently, there is a lack of clear understanding the molecular pathways contributing to 

abnormal placental function. Despite a strong correlation between elevated inflammation and 

placental pathologies, the effects of inflammation on trophoblast differentiation have not been 

explored (33, 34, 38, 39).  Factors common to both processes, inflammation and trophoblast 

differentiation, could serve as molecular targets for therapeutic use.  In the current study, we 

evaluate the potential of the nuclear hormone receptor Peroxisome proliferator-activated receptor 
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(PPARγ) for development as a molecular target.  PPARγ was chosen because it has been shown 

to be involved with multiple aspects of pregnancy and placental function, as outlined in the 

upcoming sections. 

Peroxisome proliferator-activated receptor transcription factors family 

Peroxisome proliferator-activated receptors (PPARs), a moniker owed to the early 

observation that stimulation of these proteins could induce the proliferation of peroxisomes in 

rodent hepatocytes, are transcription factors belonging to the nuclear hormone receptor 

superfamily (40).  The spectrum of ligands which effectively target these receptors include 

endogenously expressed lipid-soluble molecules (e.g. prostacyclin, lysophosphatidic acid), and 

the thiazolidinedione family of pharmaceutical compounds (e.g. Rosiglitazone, Pioglitazone) 

(41, 42).  Like other members of this receptor superfamily, the interaction of PPARs with their 

corresponding ligands elicits their activation via a change in protein conformation, resulting  

dimerization with retinoid X receptor (RXR) and recruitment of co-activators like histone 

deacetylases (HDAC’s), p300/CBP or members of the steroid receptor co-activator (SRC) family 

(43, 44).  This is followed by either direct binding to a consensus sequence on the DNA or to 

enable binding to other transcription factors like NF-kappaβ to regulate gene expression (45, 46).  

To date, three isotypes of the receptor have been identified - PPAR α, β and γ.  All  three 

subtypes, possess the canonical domain structure common to other nuclear receptor family 

members: the amino-terminal AF-1 trans activation domain, followed by a DNA-binding 

domain, and a dimerization and ligand-binding domain with a ligand-dependent trans activation 

function AF-2 located at the carboxy-terminal region (47).  Although, each subtype is a product 

of a distinct gene and they have organ specific expression pattern.  PPAR’s and their functions in 

different systems have been widely studied. Briefly, PPARα is expressed primarily in brown 

adipose tissue, in liver, kidney, heart and skeletal muscle.  It has been implicated in 
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mitochondrial fatty-acid (FA) oxidation, which provides energy for peripheral tissues (48). It’s 

involvement in antioxidant pathways is suggested to contribute to the pathogenesis of age-related 

macular degeneration (AMD) (48, 49).  PPARβ is expressed predominantly in the gut, kidney 

and heart; and involved in lipid metabolism, cell survival, wound healing, embryonic 

implantation and development of the central nervous system (50).  PPARγ is mainly expressed 

in adipose tissue and to a lesser extent in colon, the immune cells – macrophages and is known to 

be involved with processes such as adipogenesis and macrophage differentiation (51-53).  The 

three PPAR’s also show expression in both male and female reproductive tissues.  They are 

widely expressed in interstitial Leydig cells, Sertoli and germ cells, however their action in the 

testis is not completely clear (54, 55).  In the female reproductive organs PPARα and PPARβ 

isoforms are expressed primarily in the theca and stroma tissues whereas PPARγ shows strong 

expression in the granulosa cells.  Mice lacking PPARβ and γ are sub fertile suggesting an 

important role for these receptors in fertility (56). 

Interestingly, all three subtypes show expression in the placenta also in the rodent 

placenta, they are expressed in the trophoblast cells of junctional zone as well as the labyrinth 

zone (57).  They also show expression in the human placental trophoblast cells (57).   

Peroxisome proliferator-activated receptor-gamma (PPARγ) 

Regarding placental function and pregnancy, PPARγ has emerged as the crucial isoform 

owing to the embryonic lethality of the knockout mice due to gross placental abnormalities.  

While, the PPARα null mice show increased fetal loss (20% over wild type), surviving pups 

develop normally (58).  PPARβ knockout mice also show an embryonic lethality due to defects 

placental morphogenesis, but some pups do survive (lethality >90%) (59, 60).  PPARγ knockouts 

on the other hand show a 100% lethality rate due to defects in development of placental 

vasculature and thinning of the myocardial lining of the ventricles.  Interestingly, correcting for 
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the mutation in these embryos (via aggregation with tetraploid embryos which contribute only to 

the extra-embryonic lineages) rescued the placental as well as the cardiac phenotype suggesting 

an important role for PPARγ in placental function.  All three PPAR isotypes are expressed in the 

human trophoblast and a subset of endothelial cells (57).  The role of the different molecules in 

human development though is only poorly understood.  Aspects of PPARγ function in placental 

development have therefore been extensively explored in the human placenta.  In the current 

chapter, we outline the current and potentially new roles of PPARγ in placental development and 

other functions at the maternal-fetal interface (Figure 3). 

 

 

Figure 3:PPARγ has been shown to be involved in multiple key metabolic pathways in placentation
and pregnancy. These include trophoblast differentiation, inflammatory and oxidative response and
nutrient sensing - specifically fatty acid metabolism. Placental disorders such as PE often show changes
in these pathways which are partially regulated by PPARγ. Changes in activity and not necessarily
expression may result in altered fatty acid metabolism which in turn may influence villous and extra
villous trophoblast differentiation. Similarly, altered activity may cause changes in oxidative stress and
inflammation due to regulation and release of inflammatory cytokines such as TNF-α, IL-6 and others
which have shown to be associated with conditions like pre-term labor, miscarriage and pre-eclampsia.
The observation that all these factors are at least in part regulated by PPARγ supports its potential critical
role in placental physiology and disease. (EVT: extra villous trophoblast, VT: villous trophoblast, HO-1:
heme-oxygenase 1, NO: Nitric oxide) 
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PPARγ in trophoblast differentiation 

Trophoblast differentiation is a critical process in establishment of placental lineages that 

govern the placental development, maintenance and function.  We distinguish the human 

trophoblast cells into the decidua invading extra villous trophoblast (EVT) and the placenta 

residing villous trophoblast cells (VT) which are covered by the syncytium.  EVT’s invade the 

maternal decidua to establish pregnancy and secure blood-flow to the implantation site which 

provides nutrients and oxygen to the fetus.  The villous trophoblast forms the main maternal-fetal 

exchange surface, which is critical for fetal development and must adapt to environmental 

changes to secure growth throughout pregnancy.  Trophoblast differentiation is a tightly 

regulated process in human and is implicated to be abnormally regulated in placental dysfunction 

disorders (61-63).  As mentioned previously, PPAR’s are expressed human trophoblast cells.  

However, while the expression of alpha and beta subtypes nuance as the cells differentiate, 

PPARγ continues to be expressed strongly in these cells (57, 64-67).   

In vitro studies with 1st trimester EVT’s showed that treatment with PPARγ antagonists 

increased invasion whereas agonists hampered it, implicating involvement of PPARγ in 

regulating invasion of decidua (65).  Similar study with isolated term villous trophoblast showed, 

induction of differentiation upon treatment with agonists  (66).  The VT has to balance cell 

proliferation and differentiation to sustain nutrient and gaseous exchange throughout pregnancy 

(68).  Involvement of PPARγ in regulation of functions of both EVT’s and VT PPARγ not only 

suggest its crucial role in trophoblast differentiation but these studies also highlight the 

differences in response of the trophoblast subtypes to PPARγ induction.  

Interestingly, the studies on term villous trophoblast also observed differential behavior 

of these cells in response to synthetic and naturally occurring ligands of PPARγ.  Treatment with  

synthetic ligand - Troglitazone induced differentiation, whereas the natural ligand PGJ2 hindered 
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it, even inducing apoptosis in cells (66).  Thus, PPARγ seems to have different roles depending 

upon 1) trophoblast subpopulations 2) the gestational age and type and 3) the stimulating ligand 

(69).  However, one needs to bear in mind that isolated trophoblast lack their natural 

environment and tend to differentiate directly in culture which is a critical limitation in some of 

these studies (70, 71).  Additionally, while we have substantial evidence for involvement of 

PPARγ in trophoblast differentiation, we still lack the understanding of the molecular regulation.  

Few studies focusing on downstream targets of PPARγ exist (72, 73).  Glial cell missing 1 (Gcm-

1) has emerged as an interesting candidate in this respect.  It regulates differentiation of chorion 

into labyrinth trophoblast populations and controls syntiotrophoblast differentiation and mice 

lacking Gcm1 die at E10.5 due to absence of placental labyrinth (74).  PPARγ deficiency in 

mouse trophoblast stem cells was shown to affect labyrinth cell lineages via Gcm-1 (75).  Gcm1 

has been shown to be also present in human trophoblast tissue and altered levels of Gcm-1 have 

been associated with PE placentas (76-78).  Recently, Levystka K , et al showed that Gcm-1 

levels could be altered by PPARγ agonists or antagonists in BeWo choriocarcinoma cells 

suggesting that PPARγ via Gcm-1 (79) may play a role in  human trophoblast differentiation. 

PPARγ and Fatty Acid metabolism in the placenta  

Placental fatty acid (FA) transfer from the mother to the fetus is crucial for adequate 

development (80).  PPARγ has been classically known for its role in lipid metabolism.  The 

observation that the PPARγ knockout placentas showed less accumulation of lipid droplets 

suggested that it may have some similar function in the placenta.  Schaiff T, et al in 2007 showed 

that PPARγ could alter the fatty acid uptake in the placenta by increasing the expression of fatty 

acid transport proteins (FTP’s) in mice (81). 

Several fatty acid transporters (FABP, FATP and CD-36) have also been identified at the 

microvillous and basal membranes of the human placenta.  Similar to observations in mice, 
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increase in PPARγ activity has been shown to increase fatty acid uptake and accumulation in 

primary human trophoblast cells by regulating the expression of proteins such as fatty acid 

binding proteins (FABP family) (71).  In turn, oxidized LDL’s (low density lipoproteins) were 

shown to be capable of activating PPARγ in primary cytotrophoblast cells and even cause 

inhibition of trophoblast invasion (70, 82).  Thus, PPARγ appears to be regulating and it self 

being regulated by lipid metabolites.  PPARγ might act as a nutritional sensor and co-ordinate 

fatty acid uptake and trophoblast differentiation in the placenta to ensure growth and function.  

This helps to explain the placental insufficiency disorder phenotype such as PE which is 

associated by increased lipid peroxidation and defective trophoblast invasion (83, 84). 

PPARγ in placental oxidative stress 

Pregnancy is a state of physiological stress including oxidative stress.  The initial hypoxia 

followed by reoxygenation (ischemic reperfusion) are the major contributors of oxidative stress 

during early pregnancy (85).  In later stages, increased placental mitochondrial activity and 

production of reactive  oxygen   species (ROS) further contribute to the oxidative stress (8).  In 

moderation, this normally does not cause a problem but excess oxidative stress has been 

observed in pregnancy complications like IUGR, diabetes and PE (8, 85, 86).   

Nitric oxide (NO) is a vasodilator at normal levels, but at elevated levels it reacts with 

ROS to cause lipid peroxidation and nitrosylation of tyrosine residues affecting many signaling 

pathways.  High levels of NO are also observed in GDM with cases shown to have higher levels 

of oxidative stress (87).  Interestingly, blocking PPARγ greatly increases endogenous NO 

production suggesting that PPARγ might be involved in its regulation (8).  

Heme oxygenase-1 (HO-1) is known for its anti-oxidant properties and cytoprotective 

effects.  In the placenta, HO is found in vascular endothelium and villous and extra villous   

trophoblast (88). HO metabolites - carbon monoxide (a potent vasodilator) and bilirubin 
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negatively regulate endothelin 1 and ROS; and anti-angiogenic proteins such as soluble fms-like 

tyrosine kinase 1 (sFLT-1) (89, 90).  Evidence showing regulation of HO-1 expression by 

PPARγ further emphasizes its potential role in managing oxidative stress and hypertension 

during pregnancy (91, 92). 

Immune mediated effects of PPARγ 

Pregnancy in general is a state dynamic inflammatory phases, wherein the immune status 

of the mother varies from being pro-inflammatory in the start of pregnancy, to anti-inflammatory 

in the middle phase to again being pro-inflammatory towards the end (93).  There is also 

growing body of evidence suggesting that parturition at term is an inflammatory process with 

pro-inflammatory cytokines like IL-8 and TNF-α playing a role (94-96).  Thus, a balance 

between the pro and anti-inflammatory modulators at the feto-maternal interface is crucial for 

maintenance of pregnancy.  Indeed, a pre-mature (or untimely) shift towards the pro-

inflammatory conditions has been associated with cases of spontaneous abortion and  preterm 

delivery (97).  Increased levels of pro inflammatory cytokines like TNF-α, IL-6 and IL-8 have 

also been reported in PE cases (98, 99).  

Interestingly, PPARγ has been known for its anti-inflammatory effects (100).  It has also 

been shown to down regulate expression of  pro-inflammatory cytokines like IL-6, IL-8, and 

TNF-α in human gestational tissue (101).  Reduction in the levels of PPARγ during labor has 

also been documented (102).  These observations together suggest that reduction in levels of 

PPARγ at term might contribute to parturition by regulating the expression of inflammatory 

cytokines.  A premature reduction would thus ensure an inflammatory response which may result 

in loss of pregnancy.  

PPARγ expression levels and activity  

Studies assessing the protein levels of PPARγ associated aberrant levels of PPARγ with 
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placental disorders.  Decreased levels of PPARγ were reported in cases of GDM, whereas 

increased levels were observed in IUGR associated PE (103, 104).  

On the other hand, placentas from women with only PE did not show any changes in the 

levels of PPARγ protein expression (103, 104).  These women showed significantly lowered 

levels of the activators (implicated to be a fatty acid derivative) of the receptor in their serum 

when compared to age matched controls (105).  During a normal gestation, PPARγ activators 

increase as the pregnancy progresses to term (64).  Women with PE showed a drop in these 

activating factors levels 10-15 weeks before presentation of symptoms (105).  Lowered levels of 

the activators may lead to decreased activation of PPARγ which in turn may contribute to the 

pathology (105).  While these studies emphasize the importance of PPARγ in placental 

pathologies, they also suggest that balance between the absolute levels of PPARγ protein and the 

level of activity is crucial. 

Furthermore, Levystka et al. recently showed that that PPARγ underlies an auto-

regulatory mechanism (79).  The authors showed using the BeWo choriocarcinoma cell line that 

inhibition of PPARγ activity using an antagonist T0070907 led to an up-regulation of expression 

whereas activation by an agonist Rosiglitazone had the opposite effect.  Thus, in-case of PPARγ 

increased levels of protein may not always correlate with increased activity.  These factors need 

to be considered when investigating pathologic cases for the role of PPARγ. Studies on 

pathologic placentas, similar to those in cell lines will add on to our knowledge about molecular 

regulation of PPARγ in such pathologies.  

PPARγ as a therapeutic option in placental disorder 

Involvement of PPARγ with key aspects of pregnancy and the fact that it can be 

specifically modulated by a vast array of drugs already available makes it an attractive 

therapeutic option (30).  McCarthy et al in 2011 showed that pregnant rats treated with synthetic 



www.manaraa.com

14 

 

PPARγ antagonists developed pre-eclamptic phenotypes comparable to what has been described 

in human suggesting a relevant role in physiology and disease (106).  More interestingly the 

same authors showed in a separate study that activation of the receptor by administration of its 

synthetic agonist Rosiglitazone, to the (reduced uterine perfusion pressure) RUPP rats showed 

considerable improvement in hypertension with no adverse effects on the litters or placental 

vasculature (30, 106).  The RUPP model of rats resembles in parts the human PE condition, and 

administration of Rosiglitazone significantly reduced hypertension and improved vascular 

function in a HO-1 dependent manner (106).  The authors did not observe any adverse effects on 

placental morphology which contrasts with some other studies (81, 107).  The group argued that 

the low dosage used in the study and the time of administration of the drug contributed to the 

contrasting results.  The study demonstrates the ease and effectiveness of PPARγ modulation 

using drugs with so far no observed side-effects, albeit in an animal model.   

These parameters of low dosage and exposure times to the drugs seem to hold true in 

human cases too.  A few human case reports assessed the effects of use of synthetic PPARγ 

agonists (Rosiglitazone and Pioglitazone) during pregnancy, although the drugs were shown to 

cross the maternal- fetal barrier but no harm to the fetus or induction of PE was noted (108-110).  

The dosage in these studies was not as high (dose 4 mg) as recommended for diabetic patients 

(8mg) and the duration of treatment was between 7 – 17 weeks of pregnancy.  Additionally, 

while these drugs were previously thought to increase the risk of cardiovascular diseases in 

humans, recent reports do not support these claims and the drugs have been recently approved by 

the FDA for widespread use (111). 

While further studies and risk assessment would be necessary to ensure safety, PPARγ is 

a strong candidate for development of therapies managing pregnancy related disorders.  This 

dissertation project explores the role of PPARγ in placental development and pregnancy per the 
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following aims:  

Aim 1: To determine the molecular mechanism of PPARγ in prevention of preterm birth in 
the mouse model for endotoxin induced PTB. (Outlined in Chapter 2 & 3) 

Aim 2: To determine the effects of endotoxin exposure and PPARγ induction on human 
trophoblast physiology. (Outlined in Chapter 4) 

Aim 3: To determine the role of PPARγ in differentiation of extra-villous and villous 
trophoblast lineages. (Outlined in Chapter 5 & 6) 
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CHAPTER 2 - PPARγ PREVENTS INFLAMMATION INDUCED PRETERM BIRTH BY 
ATTENUATING BOTH SYSTEMIC AND LOCAL INFLAMMATORY PATHWAYS 

(This chapter contains previously published material. See Appendix D) 

Introduction 

Preterm birth (PTB), defined as delivery before 37 weeks of gestation, is the leading 

cause of neonatal morbidity and mortality (112-114).  Premature neonates are at high risk of 

short-term complications such as respiratory distress syndrome, inter-ventricular hemorrhage, 

neonatal sepsis, and necrotizing enterocolitis.  Long-term complications include neuro-

developmental disorders such as cerebral palsy, chronic lung disease, blindness, and deafness 

(115-117).  In the United States, preterm births accounted for 11.39% of all documented births in 

2013 (118).  Therefore, it is critical to elucidate the mechanisms that lead to preterm labor (PTL) 

to provide strategies for the prevention of PTB and the improvement of neonatal outcomes. 

PTL is a syndrome caused by multiple pathological processes (119). Of all the potential 

causes, intra-amniotic infection/inflammation is the only direct link to PTL that accounts for 

about 30% of all PTBs (120-122).  Infection results in a transition from an anti-inflammatory to a 

pro-inflammatory physiological state in the mother.  This involves the infiltration of innate 

immune cells, such as macrophages, and an increased expression of inflammatory mediators at 

the uterine-placental unit.  Activation of this pro-inflammatory response triggers PTL and 

consequently PTB (121, 123-125). 

In order to study the mechanisms of inflammation-induced PTL, animal models have 

been developed using mice (126-129), rats (130, 131), rabbits (132), sheep (133), guinea pigs 

(134, 135) and monkeys (136, 137).  The most common model is the murine model, in which 

PTL can be induced by the systemic administration of bacterial lipopolysaccharides (LPS) (138).  

LPS administration to pregnant mice triggers an inflammatory response, activating key signal 
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transduction pathways such as NF-κB and TNF-α that ultimately will lead to PTB (139, 140).  

These pathways are similarly activated in inflammation-induced PTL in humans (141). 

The ligand-activated transcription factor PPARγ while mostly known for its role in lipid 

metabolism and insulin sensitivity has a proven anti-inflammatory role (142-146).  Upon 

activation, PPARγ has been shown to suppress the transcription of inflammatory signal 

transduction pathways, such as NF-κB and TNF-α (100, 147).  The anti-inflammatory role of 

PPARγ has also been recognized in diseases like multiple sclerosis (MS) and atherosclerosis 

(148, 149).  However, its potential role in inflammation induced PTB remains unexplored.  Our 

group recently showed in a human trophoblast cell line (150), and in a rat model of PE, that 

PPARγ activation via Rosiglitazone induced HO-1 expression, improved vascular function and 

pregnancy outcomes (30, 106).  PPARγ has also been implicated in human parturition and 

dramatically reduced levels were reported during labor as compared to early gestation (102).  

Activation of PPARγ was also shown to reduce expression of inflammatory cytokines from 

human gestational tissues (101, 151).  These observations suggest that reduced PPARγ activity 

might regulate the onset of parturition by suppressing inflammatory cytokines.  Further, 

availability of approved drugs like Rosiglitazone that can specifically target PPARγ make it an 

attractive target for therapeutic interventions. 

In the current study, we aimed to study the potential anti-inflammatory role of PPARγ in 

inflammation induced PTB.  Using the LPS induced preterm birth model in mice, and 

Rosiglitazone to modulate PPARγ activity we aimed to: (i) determine whether treatment with 

RSG reduces the rate of LPS-induced preterm birth and improves neonatal outcomes; (ii) 

evaluate whether treatment with RSG reduces the systemic proinflammatory response in 

pregnant mice injected with LPS.  
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Recently, St Louis D et al. demonstrated that PPARγ activation reduces the expression of 

inflammatory genes in activated uterine macrophages in a model of PTB induced by iNKT-cell 

activation (152).  Given that during pregnancy local inflammatory cytokines are mostly produced 

by innate immune cells such as macrophages and neutrophils (153, 154), and the depletion of 

macrophages, but not neutrophils, prevents inflammation-induced PTB (155, 156) we also 

evaluated if PPARγ activation has a direct effect on macrophages at the uterine-placental unit.  

Materials and Methods 

Animal treatments 

C57BL/6J mice were bred in the animal care facility at the C.S. Mott Center for Human 

Growth and Development at Wayne State University, Detroit, Michigan, USA, and housed under 

a circadian cycle (light: dark=12:12 h). Females 8-12 weeks old were mated with male mice of 

proven fertility.  Female mice were examined daily between 8:00 a.m. and 9:00 a.m. for the 

presence of a vaginal plug, which denoted 0.5 days post coitum (dpc).  Upon observation of 

vaginal plugs, female mice were then separated from the males and housed in different cages.  

Procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at 

Wayne State University (Protocol No. A09-08-12). 

Pregnant mice were categorized into four different groups and injected intraperitoneally 

on 16.5 dpc with: 1) 10μg of LPS (Escherichia coli O111:B4; Sigma-Aldrich, MO) in 200 μL of 

1X PBS (n=10); 2) 200μL of PBS as a control; 3) 10μg of LPS in 200μL of 1X PBS followed by 

10mg/kg RSG 6 hours after the initial injection (n=10); and 4) 10mg/kg of RSG as a control 

(Figure 2A).  RSG was dissolved in 1:10 DMSO; therefore, pregnant mice were also 

intraperitoneally injected on 16.5 dpc with 1:10 DMSO as a control (n=6).  Pregnancy 

parameters including gestational age and the rates of preterm birth and stillbirth were recorded 
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via video camera (Sony Corporation, China).  Preterm birth was defined as delivery before 18 

dpc, and its rate was defined as the percentage of dams delivering preterm among all births.  The 

stillbirth rate was defined as the percentage of pups born dead out of the total litter size.  All 

DMSO control mice delivered at term (19.5 ± 0.5 dpc); therefore, the gestational age is shown 

instead of the rate of preterm birth.  Gestational age was calculated from the presence of the 

vaginal plug (0.5 dpc) until the observation of the first pup born.  

 

Figure 4: Rosiglitazone treatment reduces the rate of LPS-induced PTB and improves neonatal
outcomes. A) On 16.5 dpc, pregnant mice were i.p. injected with LPS and treated 6 hours after with
rosiglitazone (RSG; i.p.) and video-monitored. Control mice were injected with LPS, PBS, or RSG alone.
(B) The rate of PTB was defined as the percentage of dams delivering at <18.0 dpc among all births. (C)
The rate of stillbirth for each litter was defined as the proportion of born pups found dead out of the total
litter size. Data are shown as bar plots (mean ± SEM). Mann-Whitney U tests: n = 10 each. Fetal weights
(D) and placental weights (E) two hours following PBS, LPS, LPS+RSG, or RSG injection. Data are
shown as scatter plots (median). T-tests: n = 8 dams each. 
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Fetal and placenta weights 

A second cohort of pregnant mice was injected intraperitoneally on 16.5 dpc with LPS, 

PBS, LPS + RSG or RSG (n=8 each), as described previously. Two hours after injection, mice 

were euthanized, and peripheral blood was collected by cardiac puncture and placed into a 1.5 

safe-lock Eppendorf tube (Fisher Scientific, MA) (Figure 4A). Animal dissection and tissue 

collection (myometrial and decidual tissues) were performed as previously described (125). The 

pup and placental weights were determined using a weight scale (DIA-20, American Weight 

Scales, GA). 

Chemokine/cytokine serum concentrations 

Peripheral blood samples were centrifuged at 491 x g for 10 min at 4°C, and serum was 

separated and stored at -20°C until analysis.  The Milliplex MAP Mouse Cytokine/Chemokine 

Kit (MCYTOMAG-70K-PX32, EMD Millipore, MA) was used to measure the concentrations of 

G-CSF, GM-CSF, IFNγ, IL1α, IL1β, IL2, IL3, IL4, IL5, IL6, IL7, IL9, IL10, IL12p40, IL12p70, 

IL13, IL15, IL17, CCL11, CXCL10, CXCL1, LIF, CXCL5, CCL2, M-CSF, CXCL9, CCL3, 

CCL4, CXCL2, CCL5, and TNFα in the serum samples, per the manufacturer’s instructions. 

Plates were read using the Luminex 100 System (Luminex Corporation, TX), and analyte 

concentrations were calculated using the xPONENT3.1 software (Luminex).  The sensitivities of 

the assays were: 1.7pg/ml (G-CSF), 1.9pg/ml (GM-CSF), 1.1pg/ml (IFNγ), 10.3pg/ml (IL1α), 

5.4pg/ml (IL1β), 1.0pg/ml (IL2), 1.0pg/ml (IL3), 0.4pg/ml (IL4), 1.0pg/ml (IL5), 1.1pg/ml (IL6), 

1.4pg/ml (IL7), 17.3pg/ml (IL9), 2.0pg/ml (IL10), 3.9pg/ml (IL12p40), 4.8pg/ml (IL12p70), 

7.8pg/ml (IL13), 7.4pg/ml (IL15), 0.5pg/ml (IL17), 1.8pg/ml (CCL11), 0.8pg/ml (CXCL10), 

2.3pg/ml (CXCL1), 1.0pg/ml (LIF), 22.1pg/ml (CXCL5), 6.7pg/ml (CCL2), 3.5pg/ml (M-CSF), 

2.4pg/ml (CXCL9), 7.7pg/ml (CCL3), 11.9pg/ml (CCL4), 30.6pg/ml (CXCL2), 2.7pg/ml 
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(CCL5), and 2.3pg/ml (TNF-α).  Inter-assay and intra-assay coefficients of variation were below 

15% and 4.9%, respectively. 

Macrophage isolation from murine myometrial and decidual tissues 

Immediately after collection, myometrial and decidual tissues were mechanically 

disaggregated in the Accutase cell dissociation reagent (Life Technologies, CA) using scissors 

for approximately 1-2 min, as previously described (125).  Samples were then incubated at 37°C 

for 35 min with gentle shaking (MaxQ™ 4450 Benchtop Orbital Shaker, Thermo Fisher 

Scientific, MA).  The cell suspensions were filtered using a 100μm cell strainer (Fisher 

Scientific, MA) and washed with staining buffer [Bovine-serum albumin 0.1% (Sigma Aldrich, 

MO), sodium azide 0.05% (Fisher Scientific Bioreagents, MA), 1X PBS (Fisher Scientific 

Bioreagents).  The resulting cell pellet was re-suspended in 96μl of staining buffer, and 4μl of an 

anti-mouse F4/80 antigen biotin (clone BM8, eBioscience) were added.  The cell suspension was 

then incubated for 15 min at 4°C.  After incubation, the cells were washed with 2 ml of staining 

buffer and centrifuged at 1250 x g for 7 min at 4°C.  The cell pellet was re-suspended in 90 µl of 

staining buffer, and 10µl of Streptavidin microbeads (Miltenyi Biotec, Germany) were added.  

This cell suspension was incubated at 4°C for 15 min.  Following incubation, the cells were 

washed with 2 ml of staining buffer, and the cell pellet was re-suspended in 500 µL of MACS 

buffer.  F4/80+ cells (macrophages) were separated by positive selection using MS columns and a 

magnetic MACS separator.  Macrophages were then washed with MACS buffer at 1250 x g for 7 

min at 4°C, and an aliquot was taken to confirm purity by flow cytometry using an anti-mouse 

F4/80-PE (Clone BM8, eBioscience; Figure 6A).  The cell pellet was re-suspended in 400µL of 

RNeasy Lysis Buffer (Qiagen, Germany) and placed into a 1.5mL safe-lock Eppendorf tube 

(Fisher Scientific, MA), which was stored at -80°C until RNA isolation.  
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RNA isolation, cDNA synthesis, and qRT-PCR 

Total RNA was isolated from myometrial and decidual macrophages using the RNeasy 

mini kit (Qiagen, Germany), following the manufacturer’s instructions.  RNA concentrations and 

purity were assessed with the NanoDrop 1000 spectrophotometer (Thermo Scientific, MA), and 

RNA integrity was evaluated with the 2100 Bioanalyzer system (Agilent Technologies, CA) 

using the Agilent RNA 6000 Pico Kit (Agilent).  cDNA was synthesized by using iScript 

Reverse Transcription Supermix for RT-qPCR kits (Bio-Rad Laboratories, CA) on the Applied 

Biosystems GeneAmp PCR System 9700 (Life Technologies, MA), following the 

manufacturer’s instructions.  cDNA was amplified using the SsoAdvanced PreAmp Supermix 

(Bio-Rad Laboratories, CA) on the Applied Biosystems GeneAmp PCR System 9700.  mRNA 

expression of Nfκb1, Tnf, and Il10, and housekeeping genes (Actin, Gapdh, and Tbp) was 

determined by qPCR using the LuminoCtÒ SYBR Green qPCR ReadyMix (Sigma Aldrich, MO) 

on the CFX384 Touch Real-Time PCR Detection System (Bio-Rad Laboratories, CA), per the 

manufacturer’s instructions. Primers are described in Table 1. 

Table 1: List of primers sequences used for gene expression analysis in mouse decidual and 
myometrial macrophages 

 

Gene Name 
Gene 

Symbol 
Sequence 

Glyceraldehyde 3-phosphate 
dehydrogenase 

Gapdh 
5'-AAT GGT GAA GGT CGG TGT G-3' 

5'-GTG GAG TCA TAC TGG AAC ATG TAG-3' 

ß-actin Actin 5'-GCG AGC ACA GCT TCT TTG-3' 
5'-ATG CCG GAG CCG TTG TC-3' 

TATA Box Binding Protein Tbp 5'-TTC ACC AAT GAC TCC TAT GAC C-3' 
5'-CAA GTT TAC AGC CAA GAT TCA CG-3' 

Interleukin-10 Il-10 5'-TCA GCC AGG TGA AGA CTT TC-3' 
5'-GGC ATC ACT TCT ACC AGG TAA-3' 

Tumor Necrosis Factor-α TNF-α 5'-AGA CCC TCA CAC TCA GAT CA-3 
5'-TCT TTG AGA TCC ATG CCG TTG-3' 

Nuclear Factor of κ Light Polypeptide 
Gene Enhancer in B-Cells 1 

NF-kβ1 
5'-AGT CAC ATC TGG TTT GAT CTC TG-3' 

5'-CCT CTA CTA CAT CTT CCT GCT TG-3' 
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Immunofluorescence 

Myometrial and decidual tissues from mice injected with LPS, PBS, LPS + RSG, or RSG 

(n = 5 each) were immediately frozen in Tissue-Tek O.C.T Compound (Sakura Finetek, CA).  

Ten-micrometer–thick cryosections were cut and placed on Fisherbrand Superfrost Plus 

microscope slides (Thermo Scientific, MA).  After fixation with 4% paraformaldehyde (Electron 

Microscopy Sciences, PA), the slides were washed with 13 PBS containing 0.1% Tween 20 and 

permeabilized with 13 PBS containing 0.25% Triton X-100 for 10 min. Nonspecific Ab 

interaction was blocked using serum (KPL, MD) at room temperature for 1 h.  Slides were then 

incubated with the following rabbit anti-mouse Abs: 10 mg/ml IL-10 (Abcam, UK), 33 mg/ml 

TNF, or 2 mg/ml NF-κB1 (Novus Biologicals, CO) at 4°C overnight.  After washing with PBS 

containing 0.1% Tween 20, the slides were incubated with 2 mg/ml goat anti-rabbit secondary 

Ab conjugated to Alexa Fluor 594 (Invitrogen Molecular Probes, MA) at room temperature for 1 

h, washed again with 13 PBS containing 0.1% Tween 20, and incubated with 2 mg/ml rat anti-

mouse F4/80 Ab directly conjugated to FITC (Abcam, UK) at room temperature for 2 h.  After 

mounting with ProLong diamond antifade mountant with DAPI (Life Technologies, CA), 

immunofluorescence was visualized using an Olympus BX 60 fluorescence microscope 

(Olympus, Japan) at 1000x original magnification. The pictures were taken using an Olympus 

DP71 camera and DP Controller Software (Olympus, Japan).  The images were merged using 

ImageJ 1.44p. 

Statistical analysis 

The qRT-PCR data analysis was performed in R (http://www.R-project.org/), and for all 

other data analyses, IBM SPSS Version 19.0 (IBM Corporation, NY) was used.  For qRT-PCR 

data analysis, the statistical significance of group comparisons was assessed using the Mann-
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Whitney U test. For qRT-PCR data, negative ΔCt values were determined using two reference 

genes (Gapdh and Actb or Tbp) averaged within each sample to determine gene expression 

levels.  For the rate of stillbirth, the statistical significance of group comparisons was assessed 

using the Mann-Whitney U test.  For fetal and placental weights, the statistical significance of 

group comparisons was assessed using T-tests.  For cytokine concentrations, multiple 

comparisons were performed using analysis of variance and the Sidak post-hoc tests.  For human 

demographic data, the statistical significance of group comparisons was performed using the 

Chi-square test for proportions as well as the Kruskal-Wallis test for non-normally distributed 

continuous variables.  A p-value < 0.05 was used to determine statistical significance. 

Results 

Rosiglitazone treatment reduced the rate of LPS-induced preterm birth and stillbirth 

To study the in vivo effect of PPARγ activation on preterm birth, we determined whether 

administration of RSG could rescue LPS-induced preterm birth (Figure 4A).  As expected, LPS 

injection induced 80% of preterm births (128) (Figure 4B).  When pregnant mice were injected 

with LPS followed by treatment with RSG, a 30% reduction in the rate of preterm birth was 

observed (LPS versus LPS + RSG; (Figure 4B).  No preterm births were observed in mice 

injected with PBS or RSG alone (Figure 4B).  The rate of pup mortality in mice injected with 

LPS was 100% (Figure 4C) yet, this was reduced by 41% after the treatment with RSG (LPS 

versus LPS + RSG; Figure 4C).  Because RSG was dissolved in DMSO, it was essential to 

investigate whether DMSO alone had adverse effects in pregnancy.  All mice injected with 

DMSO delivered at term, as in mice injected with PBS (19.5+ 0.5 d; Figure 4D).  Also, mice 

injected with DMSO had a low rate of pup mortality, similar to those injected with PBS (8–13%; 

Figure 4E).  Next, we examined the effects of RSG treatment on fetal and placental weights. LPS 
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injection reduced fetal weight (LPS versus PBS; Figure 4F), but body mass was restored 

following treatment with RSG (LPS+RSG versus LPS; Figure 4F).  The reduced placental 

weight (LPS versus PBS; Figure 4G), and this was not restored by treatment with RSG (LPS + 

RSG versus RSG; Figure 4G).  The administration of RSG alone did not alter placental weight 

(RSG versus PBS; Figure 4G).  These data demonstrate that treating mice with RSG reduces the 

rate of LPS-induced preterm birth, as well as improves adverse neonatal outcomes 

Rosiglitazone treatment attenuated the systemic pro-inflammatory response induced by LPS 

Preterm labor/birth is associated with a systemic pro-inflammatory response (122, 124, 

125, 157-165).  Therefore, we determined whether treatment with RSG reduced the elevated 

systemic concentrations of cytokines/chemokines induced by LPS.  As expected, LPS increased 

the systemic concentration of several cytokines and chemokines when compared with the PBS 

control group (LPS vs. PBS; Figure 5A-C).  Treatment with RSG attenuated the LPS-induced 

pro-inflammatory response by reducing the concentrations of several cytokines and chemokines 

including TNFα, IL1β, IL3, IL4, IL9, IL10, IL12 (p40 and p70), IL13, IL15, GM-CSF, CCL2, 

CCL3, CCL4, CXCL2, CXCL5, and CXCL10 (LPS+RSG vs. LPS, Figure 3A & 3B).  In 

addition, treatment with RSG increased the systemic concentrations of IL5 and CXCL9 in mice 

injected with LPS (LPS+RSG vs. LPS, Figure 5A and B).  However, treatment with RSG did not 

reduce the systemic concentration of LPS-induced IFNγ, IL1α, IL2, IL6, LIF, G-CSF, M-CSF, 

CCL5, and CCL11 (, Figure 3C).  The administration of RSG alone did not alter the basal 

concentrations of cytokines/chemokines (RSG vs. PBS, Figure 5A-C). 
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These results demonstrate that treatment with RSG attenuates the LPS-induced pro-

inflammatory response in the mother, which provides insight into the systemic immune 

mechanisms whereby this PPARγ agonist prevents LPS-induced PTB. 

 
 

A) Serum concentrations of cytokines in mice injected with PBS, LPS, LPS + rosiglitazone (RSG), and
RSG alone. B) Serum concentrations of chemokines in mice injected with PBS, LPS, LPS + RSG, and
RSG alone. Data are shown as bar plots (mean ± SEM). Sidak T-tests: n = 8 each. *p ≤ 0.05 LPS vs. PBS;
#p ≤ 0.05 LPS+RSG vs. PBS; ψp ≤ 0.05 LPS vs. LPS + RSG. 

Figure 5: Rosiglitazone treatment attenuates the systemic inflammatory response induced by LPS. 
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Rosiglitazone treatment attenuated LPS induced macrophage activation in myometrial and 
decidual macrophages 

PPARγ activation suppresses gene transcription by interfering with signal transduction 

pathways, such as the NF-κB, STAT, and AP-1 pathways (166-168), and induces an M2 

macrophage polarization (169).  Therefore, we investigated whether PPARγ activation in vivo 

through treatment with RSG alters the NF-κB pathway, and the expression of M1 and M2 

cytokines in decidual and myometrial macrophages from pregnant mice injected with LPS 

(Figure 6A).  Decidual and myometrial macrophages (F4/80+ cells) were isolated, and their 

purity was confirmed by flow cytometry (88%-97%; Figure 6A). mRNA expression of Nfκb1 (a 

pathway regulated by PPARγ activation (166)), Tnf (an M1 cytokine (170)), and Il10 (an M2 

cytokine (170)) were determined in isolated macrophages.  LPS injection up-regulated the 

expression of Nfκb1, Tnf, and Il10 in decidual and myometrial macrophages (LPS vs. PBS; 

Figure 6B-6G); however, the mRNA abundance of these genes was down-regulated upon 

treatment with RSG (LPS+RSG vs. LPS; Figure 6B-G).  In decidual macrophages, the LPS-

induced expression of IL10 was partially reduced upon treatment with RSG (LPS+RSG vs. LPS; 

Figure 6D).  The administration of RSG alone did not alter the expression of any of these genes 

(RSG vs. PBS; Figure 6B-6G).  These results demonstrate that treatment with RSG down-

regulates the LPS-induced expression of Nfκb1, Tnf, and Il10 in decidual and myometrial 

macrophages, which provides insight into the local immune mechanisms whereby this PPARγ 

agonist prevents LPS-induced PTB.  

The protein expression of NF-κB, TNF, and IL-10 was also determined via 

immunofluorescence in myometrial and decidual macrophages.  Consistent with our mRNA 

data, LPS-induced expression of NF-κB, TNF, and IL-10 in myometrial macrophages was 

reduced upon treatment with RSG (Figure 7A-C).  Similar results were found in decidual 
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macrophages (data not shown). 

 
Figure 6: Rosiglitazone treatment reduces the mRNA expression of Nfκb1, Tnf, and Il10 in decidual 
and myometrial macrophages. A) On 16.5 dpc, pregnant mice were i.p. injected with LPS and treated 6 
hours after with rosiglitazone (RSG; i.p.), and two hours after decidual and myometrial macrophages 
were isolated by magnetic cell sorting. Control mice were injected with LPS, PBS, or RSG alone. 
Macrophage purity (F4/80+ cells, >85%) was determined by flow cytometry. The gray histogram 
represents the auto fluorescence signal from an unstained sample, and the purple histogram represents the 
fluorescence signal from a stained sample. B & E) NfκB1 mRNA expression by isolated decidual or 
myometrial macrophages. C & F) Tnf mRNA expression by isolated decidual or myometrial 
macrophages. D & G) Il10 mRNA expression by isolated decidual or myometrial macrophages. Data are 
shown as scatter plots (median). Mann-Whitney U tests: n = 5-7 each. 
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Figure 7:RSG treatment altered the protein expression of NF-κB, TNF, and IL-10 in myometrial 
macrophages. On 16.5 dpc, pregnant mice were injected with LPS and treated with RSG 6 h after. Two 
hours after injection, myometrial tissues were processed for histology. Control mice were injected with 
LPS, PBS, or RSG alone. NF-kB (A, red signal), TNF (B, red signal), and IL-10 (C, red signal) 
expression in myometrial macrophages (F4/80+ cells, green signal) was determined by 
immunofluorescence. Nuclei are blue (DAPI). Original magnification = 31000. n=5 each. 
 
Discussion 

In the current study, we evaluated if activation of PPARγ could rescue inflammation-

induced PTB.  PPARγ is a hormone nuclear receptor (40, 171) that binds lipid metabolites 

including eicosanoids, polyunsaturated fatty acids, and oxidized phospholipids as well as 

synthetic thiazolidinedione’s (e.g., RSG and GW1929) (172).  PPARγ is expressed in the fetal 

membranes and placenta (173, 174) as well as in the reproductive tissues (175-177).  PPARγ has 
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an essential role in placental development as its depletion interferes with terminal differentiation 

of the trophoblast and placental vascularization, causing fetal death (178).  In later stages of 

gestation, the PPARγ pathway is linked to the inflammatory process of parturition in both term 

and preterm stages (101, 151, 174, 177, 179-183).  Defective PPARγ signaling is associated with 

pregnancy complications (184, 185) including GDM (186), IUGR (187, 188), PE (30, 105, 189, 

190), and preterm birth (182, 191).  Conversely, PPARγ activation via 15-deoxy-Δ-12,14-

Prostaglandin J2 delays LPS-induced PTB and reduces neonatal mortality by promoting the 

resolution of inflammation (192).  However, the administration of 15-deoxy-Δ-12,14-

Prostaglandin J2 alone has negative effects on gestational length, causing late PTB (192).  In this 

study, PPARγ activation via RSG reduced the rates of LPS-induced PTB by 30% ( Figure 4B) 

and stillbirth by 40% (Figure 4C) Further, the administration of RSG alone did not have adverse 

effects on the mother or offspring (Figure 4E). 

To assess the effects of RSG administration on systemic inflammatory process, we 

analyzed the levels of pro and anti-inflammatory cytokines and chemokines in sera from mice 

LPS and LPS + RSG group.  Administration of LPS induced and inflammatory response in the 

mice and we observed a significant increase in serum levels of pro-inflammatory cytokines 

(Figure 5A-C).  The systemic inhibitory activity of RSG on inflammatory cytokines has been 

previously demonstrated in non-pregnant mice (193-195) and rats (196, 197) injected with 

inflammatory stimuli, as well as in patients with diabetic and nondiabetic coronary artery disease 

(198) or obesity (199).  Similar to the observations in these reports, administration of RSG 

significantly reduced the expression of pro-inflammatory cytokines in our model (Figure 5A-C).  

These results demonstrated that PPARγ mediated reduction in PTB acts via attenuation of the 

systemic inflammatory response. Interestingly, in our study we observed that treatment with 



www.manaraa.com

31 

 

RSG increased the serum concentration of LPS-induced IL5 and CXCL9. IL5 is a Th2 cytokine 

that is implicated in eosinophilic responses and B-cell proliferation (200), and CXCL9 is 

involved in T-cell trafficking (201) in chronic inflammatory processes (202, 203).  Previous 

reports, however, have demonstrated that treatment with RSG reduces bronchoalveolar lavage 

fluid or serum concentrations of IL5 in rodent models of asthma (204, 205) and attenuates tissue 

eosinophilia induced by this cytokine (206).  In the same fashion, treatment with RSG inhibits 

the release of CXCL9 induced by the IFNs (α,γ,β) in primary cultures of human thyroid follicular 

cells (207) and by IFNγ and TNFα in primary cultures of thyrocytes, retrobulbar fibroblasts, and 

retrobulbar preadipocytes obtained from Graves' ophthalmopathy patients (208).  These 

disparities may be due to our study being performed in pregnant mice, and the serum sampling 

conducted shortly after LPS injection.  However, further research is needed to investigate 

whether increased serum concentrations of IL5 and CXCL9 contribute to the effectiveness of 

RSG in preventing LPS-induced PTB.  

In addition to reproductive organs, PPARγ is expressed by adipose tissue and immune 

cells (54) including monocytes/macrophages (100, 166, 167, 209).  Activation of PPARγ has 

been shown to induce an anti-inflammatory profile in macrophages, which is impaired in 

macrophage-specific PPARγ knockout mice, suggesting a critical role for PPARγ in macrophage 

anti-inflammatory responses (210).  Interestingly, LPS induced PTB is completely abrogated in 

pregnant mice with depleted macrophages, suggesting these are the crucial cell type propagating 

the effects of LPS(155).  To understand the mechanism for RSG mediated PTB prevention, we 

decided to study the inflammatory gene expression in macrophages isolated for animals in the 

LPS and LPS + RSG treated animals.  Since PTB is characterized by infiltration of macrophages 

at the maternal fetal unit, macrophages for the current study were isolated from these tissues.  
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Treatment with RSG significantly reduced the expression of Nfκb1, Tnf, and Il10 by 

myometrial and decidual macrophages from mice injected with LPS (Figure 6B-G). The 

suppressive role of PPARγ activation in macrophages has been previously demonstrated in the 

NF-κB pathway (166, 167, 211), and in the expression/secretion of TNFα (100, 211-213) and 

IL10 (214, 215).  Similarly, in our study the macrophages from the LPS + RSG group had 

significantly lower expression of Nfκb1, Tnf, and Il10.  These changes in mRNA expression level 

were also reflected at the protein level (Figure 7A-C).  Taken together, these data demonstrate 

that RSG prevents LPS-induced PTB by suppressing the local pro-inflammatory response 

mediated, at least in part, by decidual and myometrial macrophages.  

In summary, the study herein demonstrates that PPARγ activation via RSG can attenuate 

the LPS-induced systemic and local pro-inflammatory responses mediated by macrophages, 

preventing PTB and improving neonatal outcomes. These findings suggest that the PPARγ 

pathway is a new molecular target for future preventative strategies for spontaneous preterm 

labor/birth. 
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CHAPTER 3 - ROSIGLITAZONE REGULATES TLR4 AND RESCUES HO-1 AND 
NRF2 EXPRESSION IN MYOMETRIAL AND DECIDUAL MACROPHAGES 

INFLAMMATION-INDUCED PRETERM BIRTH 

(This chapter contains previously published material. See Appendix E) 

Introduction 

Preterm birth (PTB) is defined as delivery before 37 weeks of gestation and affects 

approximately 9.62% of births in 2015 (37).  Premature neonates are at risk for short and long 

term health problems; making PTB one of the leading causes of neonatal mortality and morbidity 

worldwide (216).  Approximately 70% of all PTBs are preceded by spontaneous preterm labor 

(PTL) (120, 217-220), a syndrome of multiple pathological processes (119).  Of all the putative 

causes associated with spontaneous preterm labor, only intra-amniotic infection/inflammation 

has been causally linked to PTB (221-223).  Inflammation-associated PTB is characterized by 

increased expression of pro-inflammatory proteins and infiltration of immune cells in the 

maternal-fetal interface (154), as well as elevated oxidative stress (122, 123, 224).  Several 

animal models have been established to study the mechanisms whereby inflammation induces 

PTB (126, 130, 132).  Lipopolysaccharide (LPS)-induced PTB is the most widely used model 

(138). In pregnant mice, administration of LPS induces an inflammatory response resulting in 

premature delivery (225).  LPS binds to Toll-like receptor-4 (TLR4), which recruits the adaptor 

protein myeloid differentiation factor 88 (Myd88) (226) in order to initiate the activation of pro-

inflammatory proteins such as the transcription factor - Nf-κB (227, 228). Activation of the Nf-

κB pathway results in the expression of inflammatory cytokines such as TNF-α and IL-1β(226), 

triggering an inflammatory cascade that ultimately leads to PTL and PTB.  Like the human 

syndrome, LPS-induced PTB increases oxidative stress and promotes the infiltration of 

neutrophils and macrophages at the maternal-fetal interface (124, 229-231). Therefore, targeting 

pro-inflammatory macrophages at the maternal-fetal interface may represent a new strategy to 
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prevent inflammation-associated PTB. 

Pro-inflammatory macrophages are present at the maternal-fetal interface in term (i.e. 

physiological inflammation) and preterm (i.e. pathological inflammation) parturition (154, 232-

234).  Such innate immunity cells have a pro-inflammatory or M1-like phenotype in both 

processes of labor, which can be attenuated by administering Rosiglitazone (Rosi) (235).  

Rosiglitazone belongs to the thiolidazone family of compounds and acts as a specific agonist for 

the nuclear hormone receptor, Peroxisome proliferator activated receptor-gamma (PPARγ) (235).  

PPARγ is known for its role in lipid metabolism, adipocyte differentiation as well as for 

regulating the genes involved in inflammation and oxidative stress (52, 142, 236, 237). 

Interestingly, PPARγ knockouts die in-utero due to placental abnormalities suggesting a pivotal 

role in placentation (178).  Altered levels of PPARγ levels or its activators have been associated 

with pregnancy-related pathologies such as GDM, IUGR and pre-eclampsia (103-105); however, 

its potential role in preterm birth remained unexplored.  Recently, we showed that treatment with 

Rosiglitazone 1) reduced the rate of LPS-induced preterm birth by 30%, 2) reduced the rate of 

stillbirth by 41%, and 3) significantly downregulated the systemic inflammatory response in 

mice (235).  Therefore, by targeting the PPARγ pathway we could reduce the inflammatory 

effects of LPS. 

In addition to inflammation, elevated oxidative stress is a major contributor to LPS-

induced preterm birth (224, 238).  Indeed, anti-oxidant supplementation has been demonstrated 

to improve pregnancy outcomes in different models of preterm birth (230, 231, 239).  We 

therefore aimed to evaluate whether Rosiglitazone had similar actions in our model of preterm 

birth.  In the study herein, we focused on Nuclear factor (erythroid-derived 2)-like 2 (NRF2) and 

its downstream target Heme oxygenase-1 (HO-1) due to their dual role as anti-inflammatory and 
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anti-oxidative regulators (240, 241).  NRF2 is a transcription factor that regulates the expression 

of proteins involved in the detoxification of oxygen radicals by binding to anti-oxidant response 

element (ARE) in gene promoters (242).  Additionally, it has been reported to block 

inflammatory signaling in bone marrow derived macrophages and reduce inflammation in a 

thrombin induced PTB model (243, 244).  HO-1, is the rate limiting enzyme catalyzing the 

breakdown of heme, producing carbon monoxide and biliverdin.  Biliverdin is then degraded 

further into bilirubin which is a strong anti-oxidant (245).  HO-1 has been shown to play a 

critical role in placental function and reduced levels have been associated with pre-eclampsia and 

cases of spontaneous abortions (246, 247).  HO-1 has also been shown to reduce myometrial 

contractility and may thus play a role in PTB (248).   

Rosiglitazone has been shown to upregulate the expression of both NRF2 and HO-1 in 

hepatocytes (249), but its effects on expression in decidual and myometrial macrophages is 

unknown.  Herein, we hypothesized that treatment with Rosiglitazone would improve pregnancy 

outcomes in an LPS-induced model of preterm birth by indirectly affecting the inflammatory 

cascade by regulating TLR4 receptor and reducing oxidative stress by upregulating the anti-

oxidant factors NRF2 and HO-1. 

Materials and Methods 

Animal treatments 

Pregnant C57BL/6J mice were divided into 4 groups and received intraperitoneal 

injections on 16.5 dpc: Group I: LPS – received 10μg of LPS (Escherichia coli 055:B5; Sigma-

Aldrich, MO) in 200μL of 1X PBS; Group II: PBS - 200μL of 1X PBS as a control; Group III: 

LPS+Rosi - received 10μg of LPS in 200μL of 1X PBS followed by 10mg/kg of Rosiglitazone 6 

hours after the initial injection; and Group IV: Rosi - 10mg/kg of Rosiglitazone as a control.  All 
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procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at 

Wayne State University (Protocol No. A 09-08-12).  

Macrophage isolation from murine myometrial and decidual tissues 

Eight hours after the first injection, the mice were euthanized and decidual and 

myometrial tissues were collected and processed immediately for (i) macrophage isolation and 

(ii) cryo-sectioning. 

Macrophage isolation 

Macrophages were isolated from the decidua and myometrium, as previously described 

(152).  Briefly, the tissues were mechanically disaggregated using the Accutase cell dissociation 

reagent (Life Technologies, CA) and filtered using a 100μm cell strainer (Fisher Scientific, MA) 

to obtain single cell suspensions.  The cells were then washed once with staining buffer [1X PBS 

(Fisher Scientific Bioreagents) containing 0.1% Bovine-serum albumin (Sigma Aldrich, MO) 

and 0.05% Sodium Azide (Fisher Scientific, MA)].  The cells were re-suspended in 96μL of 

staining buffer, with 4μL of an anti-mouse F4/80 antigen biotin (clone BM8, eBioscience, CA) 

and incubated at 40C for 15 mins.  After incubation, the cells were washed by centrifugation at 

1250 x g for 7 min at 4°C.  The cell pellet was re-suspended in 90µL of staining buffer 

containing 10µl of Streptavidin microbeads (Miltenyi Biotec, Germany) and again incubated at 

40C for 15 mins followed by 1 wash with 2ml of staining buffer.  The resulting pellet was re-

suspended in 500 µL of MACS (Miltenyi Biotech, Germany) buffer and F4/80+ cells 

(macrophages) were separated by positive selection using MS columns and a magnetic MACS 

separator.  Macrophages were then washed with MACS buffer at 1250 x g for 7 min at 4°C.  The 

resulting cell pellet was lysed using 400µL of RNeasy Lysis Buffer (Qiagen, Germany) and used 

for RNA isolation.  
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RNA isolation and cDNA synthesis 

Total RNA was extracted (RNAeasy, Qiagen, Germany) following the manufacturer’s 

instructions. All the samples were simultaneously reverse transcribed using the iScript Reverse 

Transcription Supermix RT synthesis kit (Bio-Rad Laboratories, CA), per the manufacturer’s 

instructions.  As the number of macrophages isolated from the murine tissues is very low, the 

amount of RNA extracted was also low.  To increase the sensitivity and efficiency of qPCR, the 

target genes Tlr4, Ho-1, Nrf2 and housekeeping genes Gapdh, Tbp, Top1 were enriched by pre-

amplification.  The primers were obtained from IDT, and reconstituted with Tris-EDTA buffer 

(10mM Tris, 0.1mM EDTA, pH 8.0) to a 500µM working stock. 2.5µL from of each primer was 

mixed and the final volume was adjusted to 500 µL to create the pre-amplification primer 

cocktail (0.5µM). 10µL of the cDNA (25 ng) was mixed with 5µL of primer cocktail, 10µL of 

nuclease free water, and 25µL of pre-amplification master-mix (Sso – Advanced PreAmp 

Supermix, Bio-Rad Laboratories, CA).  The mix was then cycled for 3 mins at 950C, 15 seconds 

at 950C and 4 mins at 580C for 10 cycles. 

Real time PCR and data analysis 

The target genes Tlr4, Ho-1, Nrf2 and the housekeeping genes Gapdh, Tbp, Top1 were 

run in triplicates for each sample using 3µL of pre-amplified cDNA (diluted 1:30) per PCR 

reaction.  The primers used are outlined in Table 2. Briefly, 3µL of cDNA template was mixed 

with 1µL primer (500nM), 1µL nuclease free water, and 5µL of Sybr-green master mix 

(LuminoCT, Sigma-Aldrich, MO).  The PCR protocol used was: initial 95 °C for 5 min followed 

by 38 cycles of 95 °C for 15s and 60°C for 20s. The qPCR data was analyzed by the Pfaffl 

method using housekeeping genes as an internal reference (250, 251).  Briefly, the mean CT 

values of housekeeping genes per tissue sample was used to calculate the geometric mean CT 
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value (Geo-mean CT) and used as reference for the respective sample.  The relative expression of 

target genes was calculated by using the formula 2^ - (ΔCT), where ΔCT = Mean CT (Target 

gene) – Geo-mean CT.  The mean relative expression (MRE) of the target gene for each treatment 

groups was calculated by taking an average of the relative expression of individual tissue 

samples from the respective groups. 

Table 2: Sequences of primer used for gene expression in macrophages 
Gene Name Gene Symbol Sequence 

Glyceraldehyde 3-phosphate 
dehydrogenase 

Gapdh 
5'-AAT GGT GAA GGT CGG TGT G-3' 

5'-GTG GAG TCA TAC TGG AAC ATG TAG-3' 

Topoisomerase-1 Top1 
5'-CTT TAA TTC GTG GCG GAC TAG A -3' 

5'- AGA CAA GGA AAG ACG AAA GGA G-3' 

TATA Box Binding Protein Tbp 
5'-TTC ACC AAT GAC TCC TAT GAC C-3' 

5'-CAA GTT TAC AGC CAA GAT TCA CG-3' 

Toll like receptor - 4 Tlr4 
5'-GAA GCT TGA ATC CCT GCA TAG-3' 

5’-AGC TCA GAT CTA TGT TCT TGG TTG-3’ 

Heme oxygenase -1 Ho-1 
5’-ACA CTC TGG AGA TGA CAC CT-3’ 
5’-TTG TGT TCC TCT GTC AGC ATC-3’ 

Nuclear factor (erythroid-
derived 2)-like 2 

Nrf2 
5’-CCT TGT ACT TTG AAG ACT GTA TGC-3’ 

5’-GAG GGA CTG GGC CTG AT-3’ 

 
Immunofluorescence staining 

Myometrial and decidual tissues (n = 5 each) were immediately frozen in Tissue-Tek 

O.C.T Compound (Sakura Finetek, CA).  The tissues were sectioned into 10µm sections and 

placed on Fisherbrand Superfrost Plus microscope slides (Thermo Scientific, MA).  For staining, 

the tissues were fixed in 4% paraformaldehyde for 10 mins and washed in 1X PBS containing 

0.1% Tween-20.  The tissues were then permeabilized with 0.25% Triton X-100 in 1X PBS for 

10 min.  Nonspecific antibody interactions were blocked using donkey serum (Jackson 

Immunoresearch, PA) at room temperature for 1 hour.  Slides were then incubated with the 

following: anti- TLR4 antibody, anti-HO-1 antibody (Abcam, UK), anti-NRF2 antibody (Cell 

Signaling, MA) at 4°C overnight.  The following day, the slides were washed 3 times (5 

minutes/wash) with 1X PBS containing 0.1% Tween 20.  The slides were incubated with 2 
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mg/mL of goat anti-rabbit secondary antibody conjugated to Alexa Fluor 594 (Jackson 

Immunoresearch, PA) at room temperature for 1 hour.  The slides were washed again with 1X 

PBS containing 0.1% Tween 20, and incubated with 2 mg/mL of rat anti-mouse F4/80 antibody 

conjugated to FITC (1:100, Abcam, UK) at room temperature for 2 hours.  Post incubation, the 

slides were again washed 3 times and stained with DAPI (Room temperature for 20 mins).  The 

slides were given a final wash and mounted in Vectashield Mounting Medium (Vector 

Laboratories, CA). Immunofluorescence was visualized using the Leica DM IRB epifluorescence 

microscope (Leica, Germany), and images were captured using a Hamamatsu Orca digital 

camera (Hamamatsu Corp, Japan). 

Results 

Macrophage populations  

Macrophages were isolated from the decidual and myometrial tissues of mice treated with 

LPS only (LPS), LPS + Rosiglitazone (LPS + Rosi), Rosiglitazone only (Rosi), and PBS only 

(PBS).  The purity of the isolated F4/80+ macrophage cells was assessed by flow cytometry.  

The percentage of macrophages isolated from the decidual and myometrial tissues was 84.9% 

and 88.6% respectively (Figure 8A and B).  

 
Figure 8: Purity of isolated macrophages from decidual and myometrial tissues. Decidual (A) and 
myometrial (B) macrophages (F4/80+ cells) were isolated by magnetic cell sorting, and purity was 
evaluated by flow cytometry. The red histogram represents the auto-fluorescence control and the 
turquoise histogram represents isolated macrophages from decidua or myometrial tissues. 
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Rosiglitazone downregulated LPS-induced Tlr4 expression 

Total RNA was extracted from decidual and myometrial macrophages isolated from mice 

from LPS, LPS + Rosi, Rosi, and PBS groups and converted to cDNA.  The expression of the 

Tlr4 receptor was assessed using qPCR.   

The mean relative expression (MRE) of Tlr4 in decidual macrophages isolated from mice 

injected with endotoxin alone was significantly higher compared to those isolated from mice 

injected with PBS only (1.81 + 0.23 vs 1.23 + 0.10; p=0.031).  The MRE of decidual 

macrophages from mice injected with Rosiglitazone only was significantly reduced compared to 

those isolated from mice injected with endotoxin alone (0.96 + 0.08 vs 1.81 + 0.23; p=0.007).  

The MRE of decidual macrophages isolated from LPS injected mice treated with Rosiglitazone 

was significantly lower compared to those isolated from mice injected with endotoxin alone 

(1.14 + 0.18 vs 1.81 + 0.23; p=0.048).  However, no significant differences were observed in the 

Tlr4 expression of isolated macrophages from mice injected with PBS and Rosiglitazone alone 

(Figure 9A).  

In line with the observation in decidual macrophages, the MRE of Tlr4 in myometrial 

macrophages isolated from mice injected with endotoxin alone was significantly higher 

compared to those isolated from mice injected with PBS only (2.29 + 0.24 vs 1.25 + 0.11; 

p=0.007) and Rosiglitazone only (2.29 + 0.24 vs 1.44 + 0.10; p=0.031).  The MRE of Tlr4 in 

myometrial macrophages isolated from LPS injected mice treated with Rosiglitazone was 

significantly lower compared to those isolated from mice injected with endotoxin alone (1.20 + 

0.19 vs 2.29 + 0.24; p=0.015) (Figure 9B). 

Typically, the number of isolated macrophages is too low for conventional quantitative 

protein assessment by western blotting.  Hence, we decided to assess TLR4 protein expression 
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by immunohistochemistry (235).  The cryo-fixed decidual and myometrial tissues from mice 

injected with LPS only, LPS + Rosiglitazone, Rosiglitazone only, and PBS only were sectioned 

and stained with F4/80+ and TLR4 antibodies.  The presence of F4/80 and TLR4 was observed 

in both decidual and myometrial tissues.  The relative expression of TLR4 was higher in 

myometrial and decidual tissues from mice injected with endotoxin compared to controls 

injected with PBS and Rosiglitazone only (Figures 9C and D).  

Figure 9: Rosiglitazone downregulates LPS induced TLR4 expression. Mean relative expression of 
Tlr4 mRNA in decidual (A) and myometrial (B) in macrophages isolated from animals (n=4-7) in the 4 
treatment groups. Macrophages from the LPS treated group showed increased expression of TLR4 which 
was significantly downregulated when Rosiglitazone was administered. Representative images show 
immune-staining for TLR4 protein expression (red) in (C) decidual and (D) myometrial macrophages 
(green, arrows). The nuclei were stained with DAPI (blue). Data are shown as box plots (median). ‘*’ ‘#’ 
indicates significance at p<0.05 when compared to the LPS group and PBS group respectively. Scale bar: 
50µM, Magnification is 1000X, n=3. 
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Treatment with Rosiglitazone inhibited the LPS mediated downregulation of Nrf2 expression 

NRF2 is the master transcription factor that regulates oxidative stress via the expression 

of anti-oxidant factors (252),(253).  Therefore, to evaluate the oxidative stress signaling pathway 

in an endotoxin-induced model of preterm birth, we assessed NRF2 expression in isolated 

myometrial and decidual macrophages from mice injected with LPS only, LPS + Rosiglitazone, 

Rosiglitazone only, and PBS only.  

The MRE of Nrf2 in decidual macrophages isolated from mice injected with endotoxin 

was significantly lower compared those isolated from mice injected with PBS (2.10 + 0.22 vs 

3.28 + 0.30; p=0.028) and Rosiglitazone alone (2.10 + 0.22 vs 3.28 + 0.37; p=0.028).  The MRE 

of Nrf2 in decidual macrophages isolated from LPS injected mice treated with Rosiglitazone was 

significantly increased compared to those isolated from mice injected with endotoxin alone (3.15 

+ 0.2 vs 2.10 + 0.22; p=0.028).  The MRE of  Nrf2 was comparable between decidual 

macrophages isolated from mice treated with LPS + Rosiglitazone, PBS, and Rosiglitazone alone 

(Figure 10A). 

A similar trend in Nrf2 expression was observed in myometrial macrophages.  The MRE 

of Nrf2 in myometrial macrophages isolated from mice injected with endotoxin was significantly 

lower compared to those isolated from mice injected with PBS (1.37 + 0.16 vs 2.31 + 0.18; 

p=0.028) and Rosiglitazone only (1.37 + 0.16 vs 2.51 + 0.29; p=0.015).  In addition, the 

expression of Nrf2 in myometrial macrophages isolated from LPS injected mice treated with 

Rosiglitazone was, significantly higher than those injected with endotoxin alone (2.80 + 0.49 vs 

1.37 + 0.16; p=0.031) (Figure 10B).  Nrf2 expression levels were comparable between 

myometrial macrophages isolated from LPS injected mice treated with Rosiglitazone and those 

isolated from mice injected with PBS and Rosiglitazone alone.  
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Figure 10: Rosiglitazone recuses LPS mediated downregulation of NRF2 expression. Mean relative 
expression of Nrf2 mRNA in decidual (A) and myometrial (B) macrophages isolated from animals (n=4-
7) in the 4 treatment groups. Macrophages from the LPS treated group showed a significantly lower 
expression of Nrf2, which was rescued to control levels when Rosiglitazone was administered. 
Representative images show immune-staining for NRF2 protein expression (red) in (C) decidual and (D) 
myometrial macrophages (green, arrows). The nuclei were stained with DAPI (blue). Data are shown as 
box plots (median). ‘*’ ‘#’ ‘ψ” indicates significance at p<0.05, when compared to the LPS group, PBS 
group and ROSI group respectively. Scale bar: 50µM, Magnification is 1000X, n=3 
 

Visualization of the NRF2 protein was performed using immunohistochemistry. Neither 

decidual nor myometrial tissues from mice injected with LPS endotoxin expressed the NRF2 

protein; however, a comparable expression of NRF2 was observed in decidual and myometrial 

tissues from LPS injected mice treated with Rosiglitazone and those from mice injected with 

PBS and Rosiglitazone alone (Figures 10C and D). 
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Treatment with Rosiglitazone inhibited the LPS mediated reduction of Ho-1 expression 

The mRNA expression of Ho-1, a known downstream target for NRF2 signaling and a 

critical anti-oxidant mediator in cells, was assessed in decidual and myometrial macrophages 

(253).  The MRE of Ho-1 in decidual macrophages isolated from mice injected with endotoxin 

was significantly lower compared to those isolated from mice injected with PBS (0.11 + 0.02 vs 

0.21 + 0.004; p=0.028) and Rosiglitazone only (0.11 + 0.02 vs 0.42 + 0.09; p=0.015).  

The HO-1 expression in decidual macrophages isolated from LPS injected mice treated 

with Rosiglitazone was significantly higher compared to those isolated from mice injected with 

endotoxin alone (0.50 + 0.10 vs 0.11 + 0.02; p=0.015).  Interestingly, the HO-1 expression of 

decidual macrophages isolated from LPS injected mice treated with Rosiglitazone was 

significantly elevated compared to those isolated from PBS controls (0.50 + 0.10 vs 0.21 + 

0.004; p=0.0159).  The HO-1 expression in isolated decidual macrophages from mice injected 

with Rosiglitazone alone was also significantly higher compared to PBS controls (0.42 + 0.09 vs 

0.21 + 0.004; p=0.015) (Figure 11A). 

In contrast to decidual macrophages, HO-1 expression in myometrial macrophages 

isolated from mice injected with endotoxin was not significantly different compared to PBS 

controls (0.26+ 0.020 vs 0.22+ 0.04; p=0.45).  However, HO-1 expression in isolated myometrial 

macrophages from LPS injected mice treated with Rosiglitazone was comparable to those 

isolated from the decidua.  The MRE of Ho-1 in isolated myometrial macrophages from mice 

injected with LPS+ Rosiglitazone was significantly higher compared those isolated from mice 

injected with endotoxin (0.53+ 0.06 vs 0.26+ 0.020; p=0.03) and PBS alone (0.53+ 0.06 vs 0.22+ 

0.04; p=0.015).  The MRE of Ho-1 in myometrial macrophages isolated from mice injected with 

Rosiglitazone alone was elevated compared to those isolated from LPS-injected mice (0.46 + 
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0.06 vs 0.26+ 0.020) and PBS controls (0.46 + 0.06 vs 0.22+ 0.04); yet, these values were not 

statistically significant (Figure 11B). 

 
Figure 11: Rosiglitazone rescued LPS mediated decrease in HO-1 expression. Mean relative 
expression of Ho-1 mRNA in decidual (A) and myometrial (B) macrophages isolated from animals (n=4-
7) in the 4 treatment groups. Macrophages from the LPS treated group showed a lower expression of Ho-
1, which was significantly upregulated when Rosiglitazone was administered. Representative images 
show immune-staining for HO-1 protein expression (red) in (C) decidual and (D) myometrial tissues 
macrophages (green, arrows). The nuclei were stained with DAPI (blue). Data are shown as box plots 
(median). ‘*’ ‘#’ ‘ψ” indicates significance at p<0.05, when compared to the LPS group, PBS group and 
ROSI group respectively. Scale bar: 50µM, Magnification is 1000X, n=3 
 

The relative protein levels of HO-1 observed in myometrial tissues also supported the 

mRNA expression data.  HO-1 was expressed in myometrial and decidual macrophages isolated 

from LPS injected mice treated with Rosiglitazone as well as those isolated from mice injected 

with PBS and Rosiglitazone alone.  A reduced expression of HO-1 was observed in myometrial 
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and decidual tissues from mice injected with endotoxin compared to those injected with LPS+ 

Rosiglitazone and PBS and Rosiglitazone alone (Figures 11C and D). 

Discussion  

In the current study, we expanded the involvement of molecular pathways in the response 

to Rosiglitazone treatment in a murine model of LPS induced PTB.  Our previous study showed 

that administration of Rosiglitazone reduced the rate of LPS induced preterm birth by 30%, 

increased the pup viability by 41% and lowered systemic & local inflammation (235).  We also 

showed a downregulation of the NF-κB pathway mediators – TNF-α and NF-κB1- in decidual 

and myometrial macrophages.  These findings demonstrated that treatment with Rosiglitazone 

contributes to reduced inflammation via reducing Nf-κB activity in local macrophages.  Herein, 

we investigated whether treatment with Rosiglitazone also regulated TLR4 expression and 

induced the expression of the anti-oxidants HO-1 & NRF2, which could further support the 

reduction of PTB and pup mortality.   

Depletion of macrophages in pregnant mice abrogates the effects of LPS and prevents 

PTB (155), suggesting that these innate immune cells are involved in mediating the effects of 

LPS.  Therefore, we focused on the role of macrophages in our LPS induced model of preterm 

birth.  Decidual and myometrial macrophages from mice injected with  LPS only, LPS + 

Rosiglitazone, Rosiglitazone only, and PBS only were isolated and their gene expression was 

analyzed by qPCR.  The protein expression was assessed by staining decidual and myometrial 

tissues with antibodies against F4/80+ and the proteins of interest. We observed a significant 

increase in Tlr4 expression in both decidual and myometrial macrophages from mice injected 

with endotoxin compared to those isolated from mice injected with PBS and Rosiglitazone alone.  

Administration of Rosiglitazone post LPS prevented this upregulation and macrophages from the 



www.manaraa.com

47 

 

LPS + Rosi group had TLR4 levels (protein and mRNA) comparable to those seen in control 

groups, suggesting an active regulation of TLR4 in our model. 

Induction of Tlr4 expression by LPS has been observed in smooth muscle cells and 

microglia; however, information on the expression of this protein in mouse decidual and 

myometrial tissues and tissue macrophages is inconclusive (216, 254, 255). Salminen et al 

reported TLR4 mRNA expression in the uteri of pregnant mice; however, its expression 

significantly declined post LPS treatment (256). In-vitro studies in mouse macrophages showed 

no alteration in TLR4 expression after LPS treatment whereas human mononuclear cells showed 

an upregulation at the mRNA level with no alteration in protein expression (257),(258).  In 

contrast, we observed that the LPS upregulated TLR4 mRNA expression and protein in 

macrophages from both tissues.  These results suggest that LPS regulates the expression of its 

own receptor in these cells. Increased expression of TLR4 is associated with increased sensitivity 

to LPS and increased activation of inflammatory pathways e.g. NF-κB (254). In return, we 

suggest that Rosiglitazone mediated the downregulation of TLR4 expression (as observed in the 

LPS + Rosi group) and impaired the activation of pro-inflammatory pathways, which could 

ultimately contribute to a reduction in PTB (259). Further, in both decidual and myometrial 

tissues, the TLR4 protein was exclusively localized in the macrophages (F4/80+ cells) (Figure 

9C, D). While it is known that human decidual cells express the TLR4 protein, its expression in 

mouse decidual tissue remains unknown (260). We report that in murine decidual and 

myometrial tissues, only the macrophages express the TLR4 receptor, suggesting an active role 

in pathogen recognition and clearance during pregnancy. 

In addition to activation of NF-κB, TLR4 activation has been shown to induce production 

of reactive oxygen species (ROS), which leads to oxidative stress (261). Oxidative stress in an 
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inevitable part of pregnancy and in normal circumstances, a balance between the production of 

ROS and the anti-oxidants that scavenge them is maintained.  However, excess ROS – induced 

by inflammation or lowered anti-oxidant capacity- leads to oxidative stress damage which has 

been associated with pathologies like PE, IUGR and PTB [detailed review in (84, 262)].  Further, 

elevated ROS has been shown to augment the expression of TLR4 in mice which, in turn, has 

been shown to downregulate the expression of anti-oxidant enzyme HO-1.  These data suggest 

that there is a mutual regulation between inflammatory and oxidative stress pathways (263-265). 

The transcription factor NRF2 is the master regulator of anti-oxidant enzyme expression 

and is induced under normal cellular stress conditions by various ROS (252) (252, 253).  

Activation of NRF2 leads to its release from the cytoplasmic inhibitor Kelch Like ECH 

Associated Protein 1 (Keap-1) and translocation to the nucleus where it induces expression of 

anti-oxidant enzymes like HO-1, which then help in scavenging ROS and other oxidants. NRF2 

has been reported to play a role in murine placental development (266). Its activation was shown 

to reduce thrombin induced PTB, suggesting its active role in inflammation induced PTB. HO-1 

has also been implicated in playing crucial roles during pregnancy (267, 268).  It was reported to 

regulate recruitment and maintenance of myeloid cells in pregnant uteri and placental vasculature 

development (269, 270).  Additionally, HO-1 activation via statins was shown to delay 

myometrial contractions, cervical ripening and inhibit pathological complement activation in the 

LPS induced PTB model (271).  However, expression of both HO-1 and NRF2 in myometrial 

and decidual tissues and tissue macrophages has not been described. 

We observed that LPS treatment downregulated the expression of both NRF2 and its 

downstream target HO-1.  These results demonstrate, for the first time, that LPS actively inhibits 

the anti-oxidant response in the pregnant mice by downregulating NRF2.  Thus, LPS mediated 
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inflammation contributes to the elevated oxidative stress in this model.  As reported in other cell 

systems, Rosiglitazone treatment induced the expression of both NRF2 and HO-1.  In addition, 

the expression of these proteins in the LPS + Rosiglitazone group was comparable to that in the 

PBS and Rosiglitazone groups (249).  A cross talk between the NRF2-HO-1 signaling and 

TLR4-NF-κB signaling pathway has been suggested and activation of NRF2 has been shown to 

rescue the effects of TLR4 mediated pro-inflammatory pathways in mouse liver and adipose 

tissue cells (272-274). We suggest activation of a similar pathway due to Rosiglitazone 

administration in our model.   

Furthermore, HO-1 expression was significantly upregulated in decidual macrophages 

isolated from mice injected with Rosiglitazone only, suggesting its regulation by a NRF2 

independent mechanism.  Similar to TLR4, the NRF2 and HO-1 proteins were predominantly 

localized to macrophages from decidual and myometrial tissues, suggesting their role in 

mediating the oxidative and inflammatory stress cross talk.  

Taken together, our results demonstrate that LPS might promote inflammation and 

oxidative stress by upregulating TLR4 expression and downregulating the anti-oxidants NRF2 

and HO-1 in the LPS induced model of PTB. In addition, Rosiglitazone prevents PTB by 

downregulating TLR4 mediated pro-inflammatory signaling and upregulating the anti-oxidant 

response via NRF2 and HO-1.  

Limitations of Aim 1 

The current study evaluated the effects of Rosiglitazone intervention in preventing 

endotoxin induced PTB in mice via its effects on inflammatory and anti-oxidative pathways.  

However, Rosiglitazone has been known to contribute to PPARγ activity in several metabolic 

and cell differentiation pathways.  Evaluating the effects of Rosiglitazone intervention on these 
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pathways would provide further insights into the efficacy of intervention.  Further, the current 

study focused on macrophages as they are the critical cell type involved in LPS mediated PTB.  

Assessing the effects of PPARγ activation in other immune cell types – NK cells, neutrophils – 

would help in better understanding of the intervention model. 
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CHAPTER 4 - PPARγ ACTIVATION RESCUES ENDOTOXIN MEDIATED EFFECTS 
ON TROPHOBLAST INFLAMMATORY RESPONSE AND DIFFERENTIATION IN 1ST 

TRIMESTER HUMAN PLACENTA 

Introduction 

Crosstalk between inflammatory and trophoblast differentiation pathways at the maternal 

fetal interface is crucial for successful establishment and maintenance of pregnancy. The 

trophoblast cells of the placenta play a critical role in maintaining allogenic tolerance by 

selective expression of cell surface receptors such as HLA-E, HLA-G and HLA-C (275, 276).  

They prevent fetal rejection by suppressing local inflammatory responses via regulation of T cell 

populations and impairing responses to immune-activating cytokines present at the maternal fetal 

interface (19, 277, 278).  Additionally, trophoblast cells express pattern recognition receptors 

like Toll like receptors (TLR’s) and Nod like receptors (NLR’s) which are known to be involved 

in pathogen recognition (26, 279). Upon ligation, these receptors initiate an inflammatory 

cascade via transcription factors like NF-κB, AP-1 and STAT3 to eliminate pathogens (26, 280, 

281).  Furthermore, the uterine NK cells and macrophages at the site of implantation direct 

trophoblast migration and invasion.  They secrete several cytokines and chemokines that 

contribute to a local environment of growth factors at the maternal fetal interface (282, 283).  

These cytokines play a role in trophoblast differentiation (invasive extravillous trophoblast 

phenotype), inducing secretion of matrix degrading enzymes and selective remodeling of uterine 

spiral arteries (283-285).  The proinflammatory transcription factor NF-κB was recently shown 

to regulate expression of Placental growth factor (PlGF) – a protein known for its role placental 

angiogenesis, trophoblast proliferation. PlGF as well initiates differentiation towards the invasive 

phenotype further highlighting the role of inflammatory mediators in trophoblast function (286, 

287).  Dysregulation in these complementary processes could affect pregnancy success.  

Elevated inflammation at the maternal–fetal interface and abnormal placental function are both 
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common features in several pregnancy pathologies (288).  Localized inflammation 

(Chorioamnionitis) has been reported to be present in >85% spontaneous preterm births even in 

the absence of systemic inflammation (289).  Elevated placental cytokine release has been 

observed in cases of both preterm birth (PTB) and PE (290-294).  Furthermore, proinflammatory 

cytokines like TNF-α and IL-6 released as a part of inflammatory cascade have been shown to 

induce trophoblast cell apoptosis as well commonly found in placentas from IUGR and PE cases 

(293, 295-297).  Understanding the mutual molecular mechanism between inflammation and 

trophoblast differentiation could provide further insights into the etiologies of above mentioned 

syndromes.  It could as well potentially highlight molecular targets common to both pathways 

which can then be evaluated for development of therapeutic strategies.   

In vitro studies have shown that exposure to inflammatory stimuli induces 

proinflammatory cytokine secretion from trophoblast cells (298, 299).  Additionally, exposure to 

proinflammatory cytokines such as TNF-α, IL-6 induced trophoblast cell apoptosis and affected 

trophoblast invasion, although contradictory results were reported by various groups (300, 301).  

Jovanovic, M et al. reported that proinflammatory cytokines increased invasion in both isolated 

human primary trophoblast cells as well as HTR cells, whereas other groups reported an overall 

decrease in invasion (300-302).  To date, the effects of inflammation on trophoblast 

differentiation and related proteins including transcription factors has not been explored.  

Trophoblast differentiation is a tightly regulated process.  The transcription factor PPARγ 

recently emerged as an important protein in early trophoblast lineage differentiation as well as 

placental function.  Initially known for its role in energy metabolism and anti-inflammatory 

processes, PPARγ knockouts were shown to die in-utero due to placental abnormalities (178, 

212).  It was reported to regulate the transcription factor Glial cell missing-1 (GCM1) and the 
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glycoprotein hormone human chorionic gonadotropin (CG-β); both known to be crucial players 

in trophoblast differentiation (69, 78, 303).   

Our group recently showed that activation of PPARγ in a mouse model of inflammation 

induced preterm birth prevented premature delivery, reduced systemic and local inflammation by 

repressing NF-κB activity and improved placental and fetal weights, further emphasizing its role 

in placental function and as an anti-inflammatory agent (235, 304). Surprisingly, the role of 

PPARγ in inflammation mediated effects on trophoblast differentiation in 1st trimester human 

placenta so far has not been evaluated.  

In the current study, we therefore aimed to measure the effects of inflammation on 

trophoblast differentiation and the potential role of PPARγ in this process.  We hypothesized that 

activation of PPARγ would reverse the inflammation mediated effects on trophoblast 

differentiation. 

We applied the commonly used bacterial endotoxin lipopolysaccharide (LPS) to induce 

the inflammatory cascade and the drug Rosiglitazone (specific PPARγ agonist) to induce PPARγ 

activity in a 1st trimester placental explant culture model.  We assessed the effects of LPS 

mediated inflammation and PPARγ activity by (i) measuring the rate of apoptosis and 

proliferation in trophoblast cells (ii) evaluating expression of differentiation related markers 

(GCM1 and CG-β), and (iii) analyzing trophoblast function by studying invasion capacity. 

Materials and Methods 

Tissue collection 

Human first trimester placental tissues (5-12 weeks) were obtained with written informed 

consent from healthy pregnant women following elective termination of pregnancy at the 

Michigan Family planning facility, Michigan, US and Morgentaler Clinic, Toronto, Canada.  The 
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Institutional Review Board (IRB) of Wayne State University and Mount Sinai Hospital (MSH) 

Research Ethics Board approved all consent forms and protocols used in this study.  

First trimester explant culture 

The chorionic villi from 1st trimester human placenta were micro-dissected under a 

microscope into small pieces (20-30 mg wet weight) as previously described in (79) and cultured 

in 1ml of Dulbecco's Modified Eagle Medium – F12 (DMEM/F12) media, without phenol red 

(Life Technologies, CA) containing 10% Fetal bovine serum (FBS, Atlanta Biologicals, GA) and 

1% Antibiotic-Antimycotic (Life Technologies, CA).  The explants were treated in triplicates, by 

adding the respective treatments to the culture medium and then incubating at 8% O2, 37oC for 

24 hrs.  After 24 hrs, the explants were weighed and snap frozen to be used later for either RNA 

extraction or protein analysis.  One replicate was fixed in 4% paraformaldehyde (PFA, Fischer 

Scientific, MA) for 60 minutes and paraffin embedded to be used for immunohistochemistry.  

The media was frozen and used for ELISA. 

Cell culture 

The HTR-8/SVneo cytotrophoblast cell line (passage number 25-35) was cultured on 

plastic in T-75 tissue culture flasks (Corning) in DMEM/F12 media (Life Technologies, CA) 

containing 10% Fetal bovine serum (Atlanta Biologicals, GA) and 1% Antibiotic-Antimycotic 

(Life Technologies, CA) in a humidified incubator at 5% CO2.  Culture medium was replaced 

with serum-free medium prior to all treatments (305).  

Explants and cell culture treatments 

LPS (Escherichia coli 055: B5; Sigma-Aldrich, MO) was reconstituted in sterile 1X 

Phosphate buffered saline (PBS) (Life technologies, CA) and stored at -20oC.  Cell or villous 

explant cultures were treated by supplementing culture medium with 1µg/ml LPS in presence or 
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absence of 10µM Rosiglitazone (Sellekchem, MA).  Cells/explants treated with 1X PBS and 

10µM Rosiglitazone were used as controls.  The treatment groups will be identified as outlined 

in Table 3 in the rest of the chapter.  In addition to these, HTR-8/SV Neo cells were also treated 

with 100nM 2-[(Aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1) 

(Tocris, UK), a specific inhibitor for NF-κB activity. 

Table 3: Trophoblast explants/cell treatment groups and names. 
Treatment Group Name 

LPS - 1µg/ml LPS/Endotoxin 
LPS - 1µg/ml + Rosiglitazone- 10µM LPS + Rosi 
1X PBS Control 
Rosiglitazone- 10µM Rosi  

RNA extraction and real time PCR 

The explants/cells were lysed in 0.9 ml Qiazol (Qiagen, germany). Total RNA was 

extracted (RNAeasy Plus Universal Mini kit, Qiagen, Germany) and all samples were 

simultaneously reverse transcribed using the RT synthesis kit from Bio-Rad per the 

manufacturer’s protocol (iScript Reverse Transcription Supermix, Bio-Rad Laboratories, CA). 

Real-time PCR was performed on the Bio-Rad CFX384 real time system in triplicates in 10uL 

total reaction volume containing 10 ng of template cDNA, 5µL of SYBR-green master mix 

(LuminoCT, Sigma-Aldrich, MO) and 500nM of primers.  The primers used for assessing the 

expression levels of target and housekeeping genes are outlined in Table 4.  Data was analyzed 

using the delta delta CT method as described in (251).  
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Table 4: List of primer sequences used for studying expression levels of trophoblast 
differentiation markers 

Protein extraction and western blotting  

Total proteins were extracted from the explants by homogenizing the explants in lysis 

buffer containing: 1% (w/v) SDS, 50mM Tris, pH 6.8 and 10mM NEM followed by heating the 

lysate at 1000C for 10 mins.  The lysates were then spun at 10,000 rpm for 15 mins and the 

supernatant was collected.  Protein concentration was then determined using Pierce© 660 nm 

protein assay reagent (Thermo Scientific, MA), per manufacturer’s instructions.  Purified protein 

(30mg) was separated on 12% SDS-polyacrylamide gel (TGX Stain Free Fastcast Acrylamide 

kit, Bio-Rad Laboratories, CA) and transferred on PVDF membrane (Bio-Rad Laboratories, 

CA). Membranes were blocked with 5% skimmed milk in Tris-buffer saline (TBST) containing 

0.1% (v/v) Tween for 1hr at room temperature (RT) and incubated over night at 40C with the 

anti-GCM1 antibody (1:3000) (Aviva System Biology, UK).  The membranes were washed with 

TBST and incubated with a HRP-conjugated secondary antibody (Cell signaling) for 1 hr. at RT.  

The antibody binding was detected using the Western Lightning® ECL Pro detection kit (Perkin 

Elmer, MA). Signals were visualized using a ChemiDoc Imaging System (Bio-Rad Laboratories, 

CA) and Image Lab V.5.1 software (Bio-Rad Laboratories, CA).  Densities of immunoreactive 

bands were measured as arbitrary units by ImageJ software. Protein levels were normalized to a 

housekeeping protein β-actin (1: 20,000; Abcam, UK). 

Gene Name Gene Symbol Sequence 

Cytochrome - C 1 Cyc1 
5'-CAT CAT CAA CAT CTT GAG CC-3' 
5'-CAG ATA GCC AAG GAT GTG TG-3' 

Tyrosine 3-monooxygenase Ywh 
5'-  CCG CCA GGA CAA ACC AGT AT -3' 

5'- ACT TTT GGT ACA TTG TGG CTT CAA -3' 

TATA Box Binding Protein Tbp 
5'-CAC ATC ACA GCT CCC CAC CA-3' 

5'-TGC ACA GGA GCC AAG AGT GAA-3' 

Glial cell missing 1 Gcm1 
5'-TGA ACA CAG CAC CTT CCT C-3' 

5'-CCA CTG TAA CTA CCA GGC AAT-3' 
Human chorionic gonadotropin - 

beta 
CG-β 

5'-GGT TGA GGC TTC AGT CCA G-3 
5'-AGG GAG TAG GGT GTA GGA AG-3' 
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Enzyme Linked Immunosorbent Assay 

The media collected from placental explant cultures was assayed for levels of secreted 

inflammatory cytokines – IL-6, IL-8, IL-1β, TNF-α, CCL5 using the Duo Set ELISA 

development kits (R & D Systems) as per the manufacturers protocol.  The levels of CG-β were 

assayed using the Beta-Human Chorionic Gonadotrophin (β-hCG), free (Human) - ELISA Kit 

(Phoenix Pharmaceuticals, CA) again as per the manufacturer’s protocol.  The optical density of 

the final colored reaction product was measured at 450nm using multispectral UV/VIS plate 

reader (Bio-Tek, VT). Standard curves were used to calculate protein in content in the samples. 

The level of proteins detected was divided by the weight of the explant to obtain the amount of 

protein secreted per milligram of explant tissue.  The data was then normalized to control 

treatment to take sample to sample variations into account.  The data was analyzed using the 

Graph pad prism 7.0 software.  

Immunohistochemistry 

Immunostainings of placental villi were performed as described before (306).  Briefly, 

the sections were deparaffinized and rehydrated, followed by antigen retrieval using Dako Target 

retrieval solution (Agilent-DAKO, CA).  The intrinsic peroxidase activity was then quenched by 

incubating the sections with 3% Hydrogen peroxide (Fisher Scientific, MA) for 30 mins at RT, 

followed by a wash with 1X PBS.  The sections were then incubated overnight at 4°C with anti-

PCNA (Santa Cruz, TX), or 10μg/ml nonimmune Rabbit IgG (Jackson Immunoresearch, PA) 

(used as a negative control).  On the following day, the slides were washed 3 times (5 

minutes/wash) with 1X PBS containing 0.1% Tween 20.  The samples were then incubated for 

30 min with a peroxidase-conjugated polymer coupled to anti-rabbit IgG (EnVision Systems 

Peroxidase, Agilent-DAKO, CA).  The peroxidase was visualized with 3,3-diaminobenzidine 
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(DAB, Agilent-DAKO, CA) and hydrogen peroxide for 5 min.  Tissues were counterstained with 

hematoxylin, dehydrated and were cover slipped.  The staining was visualized using Nikon 

Eclipse 90i epifluorescence microscope (Nikon Inc., Japan) and the images were analyzed using 

ImageJ software.  

HTR-8/SV neo cells were fixed with 4% PFA in 1X PBS for 10 mins at RT, washed 3 

times with 1X PBS (5 mins/wash) and permeabilized with PBS containing 0.1% Triton-X100 for 

10 mins.  Cells were then incubated overnight at 40C with various primary antibodies against: 

anti-Integrin alpha 1 (EMD Millipore, MA), and anti-Integrin alpha 6 (Cell Signaling 

Technologies, MA) or 10 μg/ml of nonimmune mouse serum (Jackson Immunoresearch, PA), 

the next day cells were washed 3 times with 1X PBS (5 mins/wash) and incubated with 

peroxidase-conjugated polymer coupled to anti-mouse IgG (EnVision Systems Peroxidase, 

Agilent - DAKO, CA). The peroxidase was visualized with 3,3-diaminobenzidine (DAB, Agilent 

- DAKO, CA) and hydrogen peroxide for 5 min.  The cells were then imaged using the Leica 

DM IRB epifluorescence microscope (Leica, Germany), and images were captured using a 

Hamamatsu Orca digital camera (Hamamatsu Corp, Japan).  All samples were stained similarly 

to avoid staining bias.  

To quantify the staining intensity, monochromatic bright field images of the 

antibody/DAB stained cells were obtained at ×400.  Before imaging the brightness was adjusted 

in a region of each slide devoid of tissue/cells by setting the gray level to 255. Using Simple PCI 

imaging software (Hamamatsu Corp. Japan), 5 random fields were imaged per well and the mean 

gray level was determined.  The intensity from 5 images fields was averaged to obtain the mean 

intensity per well and the intensity from 3 wells was combined to get the average intensity per 

treatment. 
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Matrigel invasion assay 

For placental explants, individual clusters of 6–8 week villi were dissected under a 

stereomicroscope and verified for the presence of extravillous trophoblasts (EVT’s) on the 

villous tips.  These clusters were cultured on Millicell-CM inserts (12-mm diameter, 0.4-μm 

pores; EMD Millipore, MA) precoated with 0.2 mL of undiluted Matrigel (Corning, MI) in a 24-

well culture plate for a total of 72 hours.  The bottom chamber contained 300μL DMEM/F12 

(Life Technologies, CA) without serum, medium supplemented with 10% Fetal bovine serum 

(Atlanta Biologicals, GA) and 1% Antibiotic-Antimycotic (Life Technologies, CA).  The upper 

chamber contained approximately 200μL of the same medium.  The explants were treated by 

supplementing the media with respective drugs.  The explants were imaged every 24 hrs. for 72 

hrs using Hamamatsu Orca digital camera (Hamamatsu Corp, Japan) and the outgrowths were 

measured using the ImageJ software. Each treatment was performed in duplicates for every 

tissue, and the experiment was repeated 3 times. 

For assessing invasion of cell line, HTR-8/SV Neo cells (100,000) were cultured with 

treatments outlined in Table 3 on matrigel in 6.5mm Transwell inserts as previously reported in 

(305).  Briefly, 15µL of undiluted growth factor reduced matrigel was added onto the membrane 

and the inserts were placed into 24-well culture plates and incubated at 37oC for 1 hr. for 

polymerization.  After gel formation, the lower chamber was filled with 500 ml of serum-free 

DMEM/F12 medium and approximately 100,000 cells were cultured at 20% O2 & 37oC for 

24hrs on the matrigel in 100µL of medium.  Cells that penetrated the matrigel and populated the 

lower chamber were detached using 500µL Trypsin-EDTA solution (Life technologies, CA). The 

number of invading cells in response to treatment was quantified by microscopic imaging of 5 

random fields per well and averaging the number of cells counted per field. Each treatment was 
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performed in duplicates and the entire experiment was repeated 3 times. The calculation was 

performed by combining the average number of cells for each treatment across all experiments. 

TUNEL assay 

For histological evaluation and quantification of apoptosis in paraffin embedded sections 

DNA strand breaks were detected by terminal deoxynucleotidyl transferase (TdT)-mediated 

dUTP nick end-labeling (TUNEL), using a fluorescein-based in situ cell death detection kit 

(Roche Applied Science, IN), per the manufacturer's instructions.  Sections were imaged with a 

Nikon Eclipse 90i epifluorescence microscope (Nikon Inc., NY). The apoptotic trophoblast cells 

(TUNEL-positive nuclei) were counted at 200× from 5 random fields on each section from three 

samples for each treatment, along with the total number of nuclei (DAPI-labeled) to calculate the 

percentage of TUNEL/DAPI-labeled nuclei (TUNEL index).  Sections subjected to treatment 

without TdT were assessed as negative controls.  The calculation was performed by averaging 

counts for four fields of each specimen from duplicate samples of at least three independent 

experiments. 

Results 

Rosiglitazone reduced endotoxin induced cytokine secretion 

The changes in inflammatory cytokines expression due to endotoxin exposure were 

quantified by ELISA.  Exposure to endotoxin upregulated the secretion of inflammatory 

cytokines.  The explants from the LPS group had significantly elevated levels of TNF-α (≥ 3.0 

fold, p=0.034), RANTES (≥2.7 fold p=0.013), IL-8 (≥ 1.4 fold, p=0.034) and IL-1β (≥ 2.0 fold, 

p=0.042) when compared to the PBS treated control explants (Figure 12 A-D).  Rosiglitazone 

treatment reduced this secretion and explants from the LPS+Rosi group had significantly reduced 

secretion of TNF-α (p=0.009), RANTES (p=0.0134), IL-8 (p=0.039) and IL-1β (p=0.016) when 
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compared to the LPS treated explants. LPS treatment significantly upregulated the expression of 

anti-inflammatory cytokine IL-10 (≥ 1.8 fold, p=0.0005) which was reduced by Rosiglitazone 

presence (LPS + Rosi group, p=0.0007) (Figure 12-E).  

 
Figure 12: Rosiglitazone treatment reduced the inflammatory cytokine secretion in first trimester 
human placental explants. Cytokines secretion by first trimester human placental explants post 24hr 
LPS+/- Rosiglitazone treatment was assessed by ELISA. Rosiglitazone treatment significantly 
downregulated the secretion of inflammatory cytokines (A) TNF-α, (B) RANTES, (C) IL-8, (D) IL-1β 
and (E) IL-10. n≥12, ‘*’ indicates significance at p<0.05 when compared to the LPS treated group. 
 

Rosiglitazone reduced endotoxin induced apoptosis and restored proliferation 

Pro-inflammatory cytokines have been shown to have effects on proliferation and cell 
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apoptosis in hematopoietic and mesangial cells (307, 308).  To evaluate if endotoxin induced 

inflammatory cytokines had similar effects in trophoblast cells / placental tissue we assessed the 

rate of apoptosis – using a TUNEL assay. The endotoxin treated explants (LPS group) showed a 

significantly higher percentage of apoptotic trophoblast nuclei (>1.7 fold, p=0.02) when 

compared to the PBS treated control explants. The percentage of apoptotic nuclei in explants 

treated with LPS + Rosi was significantly lower when compared to the only endotoxin/LPS 

group (p=0.03) and comparable to the PBS control group (Figure 13A). The percentage of 

apoptotic nuclei between the Rosi and PBS control groups was not significantly different (Figure 

13A). 

Figure 13: Rosiglitazone 
treatment reduced 
endotoxin induced 
apoptosis and increased 
proliferation. (A) 
Percentage of apoptotic 
trophoblast cells identified 
by TUNEL staining and (B) 
Percentage of proliferating 
trophoblast nuclei after 24 
hrs of treatment. (C) 
Representative images for 
positive PCNA staining 
across the 4 treatment 
groups, positive nuclei 
identified by brown color 
due to oxidation of DAB 
(black arrowheads). Inset 
shows the IgG control n= 4 - 
8, ‘*’ indicates significance 
at p<0.05 when compared to 
the PBS control group, ‘#’ 
indicates significance at 
p<0.05 when compared to 
the LPS treated group. Scale 
bar: 50µm. 
 

 
 

The rate of proliferation in treated tissues was assessed by counting the trophoblast nuclei 
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stained positive for PCNA antigen over the total number of nuclei. PCNA is an auxiliary protein 

involved in DNA replication and used as a marker for cell proliferation (309).  The explants 

treated with endotoxin (LPS group) had significantly lower number of positively stained 

trophoblast nuclei (lowered to ≤50%, p=0.01) when compared to the PBS control group.  

Treatment with Rosiglitazone increased the rate of proliferation when compared to both the 

endotoxin treated explants and PBS control explants.  The values reached statistical significance 

for the comparison between LPS and LPS + Rosi groups (p=0.02) (Figure 13B and C).  The rate 

of proliferation between the Rosi and PBS control groups was comparable (Figure 13B and C). 

Rosiglitazone reversed endotoxin mediated reduction in trophoblast differentiation marker 
expression  

To assess the effects of endotoxin on trophoblast differentiation, we assessed the 

expression of GCM1 and CG-β – both have been shown to be crucial for trophoblast 

differentiation (78, 310). Exposure to endotoxin significantly reduced the expression of both 

Gcm1 mRNA (~40% reduction, p=0.04) as assessed by qPCR and protein (~30% reduction, 

p=0.01) as assessed by western blotting (Figure 14A, B). Activation of PPARγ via Rosiglitazone 

reversed this reduction and significantly induced expression of GCM1 at both mRNA (p=0.01) 

and protein levels (p=0.05) (Figure 12A, B).  

For CG-β, the endotoxin mediated downregulation was not significant on the mRNA 

level (~40% reduction, p=0.06), but achieved significance at the protein levels secreted in the 

media (~40% reduction, p=0.009) as quantified by ELISA (Figure 14C, D). PPARγ activation 

did not significantly upregulate mRNA expression of CG-β, however, secretion of CG-β (≥2.5 

fold over LPS group, p=0.002) in the media was significantly upregulated (Figure 14C, D). 

Interestingly, treatment with Rosiglitazone (Rosi group) also significantly induced protein 

expression of both GCM1 (1.3 fold over PBS controls, p=0.03) and CG-β (1.6 fold over PBS 
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controls, p=0.002) (Figure 14A - D). 

 
Figure 14: Rosiglitazone reversed endotoxin mediated reduction in trophoblast differentiation 
marker expression. Expression of trophoblast differentiation markers GCM1 and CG-β was assessed at 
mRNA level by qPCR (A, C) and protein level using ELISA and western blotting (B, D). Endotoxin 
exposure downregulated expression of both mRNA and protein levels of GCM1 and CG-β which were 
induced by Rosiglitazone treatment. n= 4 -8, ‘*’ indicates significance at p<0.05 when compared to the 
PBS control group, ‘#’ indicates significance at p<0.05 when compared to the LPS treated group. 

 
Rosiglitazone reduced endotoxin induced trophoblast invasion to control levels  

To determine the effects on trophoblast function, we assessed the effects of endotoxin 

exposure on trophoblast invasion in 1st trimester placental explants.  Villous clusters with EVT 

tips were cultured on matrigel at 3% O2, treated and the length of outgrowth monitored and 

quantified as described in the Methods section. 

Endotoxin exposure induced invasion and the length of outgrowth into the matrigel 2.0 + 

0.4 (Mean + SD) was significantly higher when compared to the control group: 0.9 + 0.2 

(p=0.0007) (Figure 15A, B).  In the presence of Rosiglitazone (LPS + Rosi group), the outgrowth 
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length in was maintained at a mean length: 1.0 + 0.4, comparable to that of the control group. 

The mean outgrowth length in Rosi group was similar to the control group: 0.99 + 0.2. 

 
Figure 15:  Endotoxin increased invasion in 1st trimester human placenta after 24 hrs of treatment. 
Villous clusters with EVT tips were cultured on matrigel and treated for a period of 48 hrs. (A) 
Representative images for mean length of invasion over the culture period. (B) Graph shows mean length 
of invasion in different groups measured after 24 hrs of treatment. n= 3, ‘*’ indicates significance at 
p<0.05 when compared to the PBS control group, ‘#’ indicates significance at p<0.05 when compared to 
the LPS treated group. Magnification: x100 

 
Endotoxin exposure increased invasion in the trophoblast cell line HTR-8/SV neo 

Endotoxin mediated increase in the length of trophoblast outgrowths observed in the 

treated explants was counterintuitive due to the decrease in expression of trophoblast 
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differentiation markers.  Gestational age and oxygen concentration have been shown to play a 

critical role in trophoblast invasion (311) in 1st trimester placenta.  To validate our observations 

on endotoxin mediated effects on invasion are independent of O2 levels and gestational age, we 

used the trophoblast cell line HTR-8/SV neo.  

Similar to the observations in explants, exposure to endotoxin significantly increased the 

number of HTR-8/SV Neo cells (12,974+ 3128 (Mean+ SD), p=0.01) invading into the matrigel, 

when compared to the PBS control group (5560 + 3221) (Figure 14A, B).  Presence of 

Rosiglitazone in the culture significantly lowered these numbers (L+R group: 7819 + 1607, 

p=0.05) when compared to the LPS group (Figure 16A, B).  The number of invading cells was 

comparable in the PBS, Rosi only and LPS+ Rosi groups. 

 
  

Figure 16: Rosiglitazone reduced endotoxin induced invasion in trophoblast cell line HTR- 8/SV
Neo.  Graph shows the average number of cells counted in the lower chamber in the matrigel invasion
assay with HTR-8/SV Neo cells. Treatment with LPS significantly increased number of cells in the lower
chamber which reduced when treated with Rosiglitazone. (B) Representative images shows cells in the
lower chamber in wells with respectively labelled treatments. n=6, *’ indicates significance at p<0.05
when compared to the PBS control group, ‘#’ indicates significance at p<0.05 when compared to the LPS
treated group. Scale bar: 50µm 
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Endotoxin exposure induced integrins switching in HTR-8/SV neo cells 

Integrin switching is a physiological event during trophoblast invasion (312). The 

expression of integrin α1 expression is upregulated in differentiating and invasive trophoblast 

cells whereas, integrin α6 expression is restricted to noninvasive cytotrophoblasts (312). To 

further validate the effects on trophoblast invasion, the HTR-8/SV neo cells were stained with 

antibodies against integrins α1 and α6 (Figure 16C) and the staining intensity quantified. 

HTR-8/SV neo cells treated with endotoxin had a significantly higher expression of 

integrin α1 (LPS v/s PBS: 29.4+1.6 v/s 8.3+1.4 arbitrary units (AU), (Mean + SD), p<0.0001) 

and reduced expression of integrin α6 (LPS v/s PBS: 10.4+ 2.0 v/s 38.3+1.9 AU, p<0.0001) 

when compared to the PBS controls (Figure 16D).  Treatment with Rosiglitazone, prevented this 

switch and the LPS + Rosi group had significantly lower expression of integrin α1 (LPS + R v/s 

LPS: 8.6+1.9 v/s 29.4+1.6 AU, p<0.0001) and higher expression of α6 (LPS + R v/s LPS: 

33.1+1.5 v/s 10.4+2.0 AU, p<0.0001) when compared to the LPS treated group.  The expression 

of both integrin α1 and α6 in the LPS + Rosi, Rosi and PBS groups were comparable (Figure 

16C and D).  Additionally, we also assessed α1 and α6 staining intensity in cells treated with 

endotoxin and NF-κB inhibitor.  Treatment with NF-κB inhibitor prevented the integrin 

switching in response to LPS exposure.  The staining intensity of α1 in the LPS + NF-κB 

inhibitor group was significantly lower (LPS + NF-κB inhibitor v/s LPS: 10.3 + 2.4 v/s 29.4+1.6 

AU, p<0.0001), and α6 was significantly higher as compared to the LPS group (LPS + NF-κB 

inhibitor v/s LPS: 48.7 + 3.4 v/s 10.4+2.0 AU, p<0.0001) 

Discussion 

Inflammation and trohoblast differentiation are completementary processes that ensure 

successful placentation and pregnancy maintaninace.  The cytokines and growth factors secreted 
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by both the immune cells and trophblast cells at the maternal fetal interface control the 

proliferative and invasive capacity of trophoblasts (19, 277).  The tropoblast cells in turn engage 

in processes like selective expression of cell surface recpetors and regulation of local immune 

cell activation that protect the fetus from rejection (130, 275, 276).  Failure to do so has been 

associated with  a wide spectrum of pregnancy related disorders (289, 290, 296).  

Several studies have evaluated the molecular pathways involved in the inflammtory 

response of the trophoblast cells in response to infection and/or inflammatory stimuli (288, 302).  

However, the effects of inflammtion on trophoblast differentiation have not been assessed in 

great detail.  Studying the effects of inflammation on trophoblast differentiation will help to 

better understand diorders such as PE,  IUGR and PTB.  All of the latter are known to be 

associated with increased inflammtion and abnormal trophoblast differentiation (293, 294, 313). 

A protein involved in trophoblast differentiation is the transcription fator PPARγ (150, 

185).  Interestingly, PPARγ also has a known anti-inflammtory action and its activation was 

recently shown prevents PTB and reduces inflammation in the mouse model of endotoxin 

induced PTB.  However its anti-inflammtory role in 1st trimester human placenta has not been 

explored.  In the current study we assessed the effects of LPS on trophoblast inflammatory 

resposne and differentiation and the potential role of PPARγ activation in reversing these effects.  

Here, exposure of 1st trimester placental explants to LPS (1µg/ml) for 24 hrs significantly 

induced the secretion of inflammatory cytokines - TNF-α, IL-1β, IL-8, and RANTES - similar to 

the observations made in other cell culture models (288, 302).  Additionally, we observed a 

significant increase in secretion of the anti-inflammatory cytokine IL-10 post endotoxin 

exposure. LPS mediated induction in IL-10 expression was shown in human alveolar 

macrophages, kupffer cells and blood monocytes (314, 315).  Gniesinger et al  reported a similar 
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induction of IL-10 in primary trophoblasts isolated from term placentas (316).  Upregualtion of 

IL-10 secretion in response to endotoxin is interpreted as a defense mechanism against the 

ensuing inflammtory damage (317-321).  We suggest a similar mechanism for IL-10 

upregulation in our study.  Activation of PPARγ via Rosiglitazone significantly reduced the 

secretion of TNF-α, IL-1β, IL-8, and RANTES - cytokines (Figure 12 A-D) including IL-10, 

confirming its anti-inflammatory action in 1st trimester human placenta.  

PPARγ activation by Rosiglitazone has been reported to exert its anti-inflammatory 

action via transrepression NF-kB activity in several non-preganancy related animal and human 

models of diseases (146, 199, 212).  Our group recently validated the anti-inflammatory action of 

PPARγ at systemic and local levels by repressing NF-κB activity in a mouse model of PTB (235, 

304).  In the current study, we observed a significant reduction in TNF-α and RANTES - specific 

targets of the NF-κB pathway (Figure 12 A, D).  Based on the evidence present in literature and 

our previous observations, we speculate a similar mechanism to be present in the human first 

trimester placenta. 

We further studied the effects of endotoxin exposure on apoptosis and proliferation 

specifically on the trophoblast cells in cultured explants.  LPS exposure has been shown to 

induce apoptosis and reduce proliferation in immune cells (322).  Studies with LPS and isolated 

primary trophoblast cells reported increase in apoptosis post three days of exposure and no 

effects on proliferation (288, 323).  Exposure to high concentrations of recombinant 

inflammatory proteins - TNF-α and IFN-γ - was however reported to increase apoptosis and 

block proliferation in trophoblast cell line JEG-3, whereas IL-8 exposure was shown to increase 

proliferation in HTR-8SV/Neo cells (297, 324, 325).  In our studies, we observed a significant 

increase in apoptosis and reduction in proliferation in trophoblast cells post 24 hrs of endotoxin 
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exposure suggesting a negative effect on cell viability (Figure 13).  In the explants treated with 

LPS + Rosiglitazone, both apoptosis and proliferation rates were restored to control levels 

(Figurere 13 A-D).  Further, the levels of both apoptosis and proliferation in the explants from 

the Rosi only group were comparable to the PBS treated controls (Figure 13 A, C).  These results 

suggest that in the placenta, PPARγ mediates the effects on trohpoblast apoptosis and 

proliferation indirectly, possibly via a downregulation of the inflammation cascade. 

The proliferative capacity in the trophoblast cells is coupled to differentiation with 

reduction in proliferation as cells differentiate (326). To determine if the reduction in 

proliferation observed in our study affected trophoblast differentiation, we assayed the 

expression of Glial cell missing 1 (GCM1) and chorionic gonadotropin – beta (CG-β ) as proxies 

for this process. GCM1 is a transcription factor reported to be crucial for terminal differentiation 

of tropbhoblast cells and consequently for maintaining a balance between trophoblast 

proliferation and differentiation (78). CG-β is a glycoprotein hormone secreted by and involved 

in differentiation of trophoblast cells (310, 327).  Contrary to our expectations, exposure to 

endotoxin significantly downregulated expression of both GCM1 and CG-β (Figure 14A-D).  

Treatment with Rosiglitazone stimulated expression of both proteins and expression in LPS + 

Rosi group was significantly higher over the endotoxin treated group.  The expression of GCM1 

and CG-β in the Rosi only group was also significantly higher over the PBS treated control. 

PPARγ mediated upregulation in GCM1 was previously reported by our group in the BeWo 

trophoblast cell line, whereas upregulation in CG-β was reported by us as well as other groups 

(69, 150).  Endotoxin mediated downregulation in GCM1 protein has never been reported and 

expression of CG-β was shown to be unaffected (328).  Further, since PPARγ activation 

upregulated the expression of both targets irrespective of the endotoxin mediated 
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downregulation, we suggest that LPS and PPARγ regulate expression of GCM1 and CG-β by 

independent mechanisms. Interestingly, decreased placental expression of GCM1 and lower CG-

β levels were reported in pre-eclamptic women (77, 329).  Endotoxin mediated decrease in 

GCM1 and CG- β observed in our study might explain the relationship between increased 

inflammtion and lowered differentiation marker expression observed in PE.  

Both GCM1 and CG-β have been shown to affect trophoblast function - specifically 

trophoblast invasion capacity (78, 327). GCM1 knockdown in 1st trimester human explants 

significanlty inhibited invasion (78).  Whereas contradictory results have been reported for the 

effect of CG-β on trophoblast invasion by other groups.  It was reported to increase invasion in 

the trophoblst cell line JEG-3 whereas higher concentrations were shown to reduce invasion in 

isolated primary trophoblast cells (327, 330).  More recently, Prast et al reported that CG-β  

stimulated trophoblast invasion in a culture system similar to ours (331). As endotoxin exposure 

affected both GCM1 and CG-β expression in our study, we evaluated if this reduction resulted in 

any pertubations in trophoblast invasion.  Surprisingly, we observed that exdotoxin treated 

explants displayed significantly higher invasion capacity (longer mean outgrowth length) when 

compared to the PBS treated controls.  This was restricted to control levels in explants treated 

with Rosiglitazone (LPS + Rosi group).  Mean invasion length in explants from the Rosi only 

group was also comparable to the PBS control group.  Previous stuides evaluating effects of 

endotoxin on invasion have reported a decrease in invasion in isolated primary trophoblast cell 

model  (288, 302).  While the contrasting results may be attributed to differences in cell models 

used for the studies, we asked if these discrepancies were due to differences in gestational age of 

the tissue and the O2 tension used for the matrigel invasion experiments.  The experimental setup 

for the invasion assay was different from the one used for previously discussed experiments in 



www.manaraa.com

72 

 

two ways: (i) it used early first trimester tissue (5-7 weeks v/s the 10-12 weeks of gestation age), 

as at an older gestation age the (invading EVT cells are rare and) invasion capacity is potentially 

reduced (ii) it used a lower O2 tension (3% v/s the 8% ) as it is considered to be more reflective 

of the physiological O2 concentration at 5-7 weeks of gestation (332).  Both these factors have 

been shown to impact trophoblast cell invasion (311, 333, 334). To confirm our observations on 

endotoxin mediated effects on trophoblast invasion are independent of age and O2 tension, we 

repeated the matrigel invasion assay using the HTR-8/SV neo trophoblast cell line.  Similar to 

the effects observed in placental explants, exposure to endotoxin siginificantly induced invasion 

in HTR-8/SV neo cells, which was reduced to control levels when treated with Rosiglitazone 

(LPS+ Rosi, Rosi group) (Figure 16). To further validate our results and confirm induction of an 

inavsive pheotype, we perfomed immunostaining for the integrins α1, α6 and quantified their 

expression in HTR-8/SV neo cells.  Trophoblast cells undergoing differentiation towards the 

invasive phenotype have been shown to temporally and spatially switch their cell surface integrin 

expression from integrin α6 to integrin α1 (312).  We observed that the changes in α1 and α6 

expression were in accordance with our invasion results. Endotoxin exposure caused the HTR-

8/SV neo cells to significantly upregulate α1 expression while simultaneously downregulating α6 

compared to the controls (Figure 17).  Rosiglitazone treatment prevented this swtich and 

expression levels in the LPS + Rosi and Rosi groups were comparable to the ones in PBS treated 

control groups i.e.significantly low α1 and high α6 expression. Previous reports assessing the 

effects of PPARγ activation on trophoblast cells invasion have reported negative effects of the 

transcription factor (335-337).  However, these studies were performed in isolated primary 

trophblats cells cultured at 5% O2 tension. We suggest that differences in the cell model and 

culture conditions might be the confounding factors for the contrasting observations made in the 
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current study. Also, since Rosiglitazone treatment alone did not inhibit/reduce invasion, we 

concluded that the inhibitory activity of PPARγ does not directly affect trophoblast invasion and 

acts via regulation of inflammatory pathways triggered by LPS.  

 
Figure 17: Rosiglitazone prevented endotoxin mediated integrin switching in trophoblast cell line 
HTR- 8/SV Neo. HTR-8/SV Neo cells were stained for assessing the expression of integrins α1 and α6. 
(A) Graph shows mean staining intensity for α1 and α6 across groups. (B) Representative images showing 
α1 and α6 integrin staining across different treatments, showing the integrin switch in the LPS group 
which was prevented in the LPS + Rosi and LPS+ NF-κB inhibitor group. n=6, ‘*’, ‘ψ’ indicates 
significance at p<0.05 when compared to the PBS control group for α1 and α6 respectively, ‘#’, ‘¥’ 
indicates significance at p<0.05 when compared to the LPS treated group for α1 and α6 respectively. 
Scale bar: 50µm. 

The inflammatory action of LPS is triggered by binding to its specific receptor Toll like 

receptor – 4 (TLR4) and downstream activaion of the the inflammatory transcription factor NF-

κB (338, 339).  To determine if the effects on trophoblast invasion were medaited via this 
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pathway, we treated HTR cells with LPS +/- TPCA, a specific inhibitor of NF-κB activity and 

assessed for induction of invasive phenotype.  We observed that in presence of  NF-κB inhibitor, 

the trophoblast cells failed to switch integrin subtype (Figure 17) suggesting that the LPS driven 

differentiation towards the invasive phenotype is mediated by activation of NF-κB.  We also 

qualitatively confirmed this pathway in our explant culture model by matrigel invasion assay.  

Additionally, Rosiglitazone via PPARγ activation has been shown to repress the NF-κB activity, 

which would further explain Rosilgitazone mediated reduction in trophoblast invasion post 

endotoxin treatment (100). 

To summarize, in the current study we report that endotoxin exposure in 1st trimester 

human placenta (i) causes inflammatory cytokine expression, (ii) induces trophoblast cell 

apoptosis, (iii) reduces trophoblast cell proliferation, (iv) downregulates expression of trophblast 

differentiation related proteins and (v) increases trophoblast invasion via activation of NF-κB.  

Activation of PPARγ via Rosiglitazone reduces the endotoxin mediated effects on inflammatory 

cytokine production, apoptosis, proliferation and invasion and further stimulates expression of 

trophoblast differentiation markers. 

Limitations of Aim 2 

The current study focusses on the inflammation mediated via activation of NF-κB and its 

effects on trophoblast function.  LPS treatment has been shown to induce inflammation by 

activation of transcription factors such as STAT and AP-1 in addition to NF-κB (340, 341).  

Effects of inflammtion due to activation of STAT and AP1 on trophoblast differentiation would 

further help in understanding the link between inflammation and placental function.  The current 

study also outlines the anti-inflammatory action of PPARγ in the placenta and its role in 

reversing inflammation mediated effects on trophoblast differentiation.  However, PPARγ has 
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been suggested to play a role in trophoblast differentiation beyond inflammation.  Evaluating the 

molecular pathways governed by PPARγ in trophoblast lineages will further help in 

understanding its role in placental physiology and disease. 
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CHAPTER 5 - PPARγ REGULATES TROPHOBLAST DIFFERENTIATION VIA 
GLIAL CELL MISSING -1 

Introduction 

Peroxisome proliferator-activated receptor-gamma (PPARγ) belongs to the nuclear 

hormone receptor superfamily.  Apart from being involved in lipid metabolism, like its other two 

subtypes PPAR α and β, it was shown to be crucial for successful placentation.  Barak et al. 

reported that PPARγ knockouts die in utero due to gross placental and cardiovascular 

abnormalities (178).  Replenishing PPARγ expression in the extra-embryonic lineages of PPARγ 

null mutants resulted in viable pups suggesting a critical role of PPARγ in placental development 

(178).  Further analysis of the PPARγ null embryos revealed that these placentas had a 

significantly thicker layer of undifferentiated trophoblast cells and an under - developed 

placental vasculature.  These findings suggested a dysregulation of the trophoblast differentiation 

pathway mediated by PPARγ.  Parast et al. using PPARγ-/-  murine trophoblast stem cells that re-

introducing PPARγ in these cells rescued differentiation of the syncytiotrophoblast and 

labyrinthine trophoblast – crucial components of mouse placental structure and vasculature - by 

upregulating the expression of Glial cell missing 1 (GCM1) (303). GCM1 is a transcription 

factor regulating differentiation of mouse and human trophoblast lineages (74).  Functionally, the 

labyrinth trophoblast in the mouse placenta resembles the villous trophoblast in human placenta 

which also expresses GCM1 (76).  Baczyk et al. reported that knockdown of GCM1 expression 

in 1st trimester human placenta altered trophoblast proliferation, syncytial fusion in villous 

trophoblast and inhibited invasion in extra-villous trophoblast cells – supporting its critical role 

in human trophoblast differentiation (78).  Recently, Levytska et al. showed that activation of 

PPARγ in the human choriocarcinoma trophoblast cell line – BeWo significantly upregulated 

GCM1 expression (150).  Further, our studies in 1st trimester human placenta also showed 
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upregulation in GCM1 and its downstream target CG-β on treatment with Rosiglitazone at both 

transcript and protein levels (Figure 14, Chapter 4). In-silico analysis of GCM1 promoter 

identified 2 putative PPARγ target sites 20bp and 211bp upstream of the transcription start site 

(Figure 19).  Unpublished work from our laboratory using the electrophoretic mobility shift 

assay (EMSA) showed that PPARγ can bind to both these sites in the GCM1 promoter.  For the 

current study, we hypothesized that in human trophoblast cells PPARγ regulates GCM1 

expression by binding to its specific target sites in the GCM1 promoter. 

Materials and Methods 

Cell culture and treatments 

The human choriocarcinoma cell line JEG-3 was cultured in Dulbecco's Modified Eagle 

Medium (DMEM) and Ham's F12 (1:1; DMEM/F12) media (Invitrogen, CA) containing 10% 

FBS and 1% Antibiotic-Antimycotic (Life Technologies, CA) in a humidified incubator at 5% 

CO2.  For the manipulation of PPARγ activity, the cells were treated in duplicates with a specific 

PPARγ antagonist SR-202 (TOCRIS, Bioscienc, UK) at 400μM concentration or the agonist 

Rosiglitazone at 50μM for 3hrs.  At the end of 3hrs of incubation the cells from one replicate 

were lysed in Qiazol (Qiagen, Germany) for RNA extraction. The second replicate was used for 

chromatin immunoprecipitation to investigate the physical locations of the transcription factor. 

The experiment was repeated 4 times. 

Chromatin Immunoprecipitation 

After the respective treatments, the media was aspirated from the wells and cells were 

gently washed with 1ml ice cold PBS (Life Technologies, CA).  The cells were then cross- 

linked by adding 4% formaldehyde solution (Thermo Scientific, MA) and placing on a shaker at 

RT for 6 mins.  The crosslinking was stopped by adding 125mM glycine solution (Fisher 
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Scientific, MA) and cells were washed with 1ml cold PBS for 5 mins to remove the residual 

formaldehyde.  The cells were then lysed in cell lysis buffer (10mM HEPES, 60mM KCl, 1mM 

EDTA, 1mM 1,4-dithiothreitol, 1mM PMSF, 0.075% NP-40, pH 7.6) for 3 mins and spun at 

1500 rpm for 4 mins.  The pellet was re-suspended in nuclei lysis buffer (10mM EDTA, 50mM 

Tris HCl, 1% SDS, pH 8.1) and incubated on ice for 30 mins to obtain chromatin.  The resulting 

chromatin lysate was then sonicated on a focused ultra-sonicator (S220, Covaris, MA) to obtain 

fragments between 200-500bp.  Post-sonication, the amount of DNA was directly quantified in 

the sonicated chromatin using a spectrophotometer (NanoDrop).  For each treatment 

immunoprecipitation reactions were set up using anti- RNA Pol II CTD and anti- PPARγ 

antibodies (Thermo Scientific, MA) and an aliquot was saved as input fraction.  Each 

immunoprecipitation reaction contained ~5µg chromatin, 4µg respective antibody and 9µL 

Dynabeads Protein G magnetic beads (Invitrogen, MA) and was rotated overnight at 4oC.  On the 

second day, the beads were washed by rotating for 5mins at 4oC.  The bound DNA was eluted by 

adding 40µL Chelex beads (Bio-Rad Laboratories, CA) and heating at 100oC for 10 mins 

followed by reverse crosslinking by adding 2µL Proteinase K and incubating at 55oC for 60 mins 

and RNase treatment for 30 mins at 37oC. 3µL of the eluted DNA was used for qPCR analysis 

using the primer pairs: 5’ -- CCAGGC TGCTCTTACCTATCC --- 3’ & 5’-- 

TCTTACTGCTGGTTCAAGTCCC -- 3’ for site I and 5’--  CTACTGTGAATCGTCTGCCT -- 

3’ and 5’—TCTTCCCAGAATGCCAGCAA -- 3’ for site 2 spanning the two PPARγ target sites 

in the GCM1 promoter.  The enrichment of the GCM1 promoter was calculated using the percent 

input method outlined in (342).  

RNA extraction and qPCR analysis 

The cells were lysed in Qiazol and RNA was extracted using RNeasy Plus Universal 
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Mini kit (Qiagen, Germany) as per the manufacturer’s protocol.  The extracted RNA was 

quantified using Nanodrop and 1µg was reverse transcribed using iScript RT synthesis kit (Bio-

Rad Laboratories, CA).  Real-time PCR was performed on the Bio-Rad CFX384 real time 

system in triplicates in 10uL total reaction volume containing 10 ng of template cDNA, 5µL of 

SYBR-green master mix (LuminoCT, Sigma-Aldrich, MO) and 500nM of primers.  The primers 

used for assessing the expression levels of target and housekeeping genes are outlined in Table 5.  

Data was analyzed using the delta delta CT method as described in (251).  

Table 5: Primer sequences used for gene expression analysis in JEG-3 cells. 

Results 

Gcm1 expression is differentially regulated by PPARγ agonist and antagonist 

Similar to the observation reported by Levytska et al. Rosiglitazone treatment 

significantly induced Gcm1 mRNA expression in JEG-3 cells (3.7 fold, p=0.01) when compared 

to the untreated controls (150).  Cells treated with the PPARγ antagonist SR202, had 

significantly lower Gcm1 expression (1.4 fold, p= 0.05) as compared to the Rosiglitazone 

treatment.  The expression of Gcm1 was comparable between the untreated control cells and 

SR202 treated cells (Figure 18).  

Figure 18: Gcm1 expression correlates to PPARγ 
activation status. Treatment with PPARγ agonist 
Rosiglitazone significantly upregulated the expression of 
Gcm1, whereas treatment with the antagonist significantly 
reduced Gcm1 expression. N=4, *: Significant V/s control at 
p<0.05, #: Significant v/s Rosiglitazone at p<0.05 

Gene Name Gene Symbol Sequence 

Cytochrome - C 1 Cyc1 
5'-CAT CAT CAA CAT CTT GAG CC-3' 
5'-CAG ATA GCC AAG GAT GTG TG-3' 

Tyrosine 3-monooxygenase Ywh 
5'-  CCG CCA GGA CAA ACC AGT AT -3' 

5'- ACT TTT GGT ACA TTG TGG CTT CAA -3' 

TATA Box Binding Protein Tbp 
5'-CAC ATC ACA GCT CCC CAC CA-3' 

5'-TGC ACA GGA GCC AAG AGT GAA-3' 

Glial cell missing 1 Gcm1 
5'-TGA ACA CAG CAC CTT CCT C-3' 

5'-CCA CTG TAA CTA CCA GGC AAT-3' 
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PPARγ and active RNA polymerase II preferentially bind to Site I in the GCM1 promoter to 
regulates its expression 

The binding of transcription factors PPARγ and active RNA Pol II to the GCM1 

promoter was evaluated by performing chromatin immunoprecipitation assay.  We observed that 

both RNA Pol II and PPARγ precipitates were positively enriched for both target sites, I and II.  

Treatment with Rosiglitazone resulted in higher enrichment of the site I (2.7 + 1.1 (Mean fold 

change + SD), p=0.02) when compared to its enrichment in untreated controls.  The enrichment 

for target site II located -211bp for immunoprecipitation with PPARγ antibody was 1.5 + 0.62, 

but did not reach statistical significance Figure 19 & 20A).  For immunoprecipitation with RNA 

Pol II, the enrichment for site I was 2.2 + 1.2 (p=0.028) and site II was 1.5 + 0.3 when compared 

to the enrichment of respective sites in untreated controls. 

 
Figure 19: Illustration for putative PPARγ binding sites in GCM1 promoter. 

Further, we also observed that PPARγ binding to the site I correlated to its activation 

status.  Treatment with Rosiglitazone significantly increased the enrichment of the biding site I 

(2.71 + 1.1, p=0.02) when compared to the untreated controls.  The enrichment of site I in the 

antagonist treated cells was lower (0.39 + 0.2, p=0.026) when compared to the untreated 

controls, however the values did not reach statistical significance (Figure 20B). 
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Figure 20: PPARγ activation led to preferential binding and enrichment of the binding site I in 
GCM1 promoter. (A) PCR analysis of PPARγ and Pol II immunoprecipitants showing significantly 
higher enrichment of the binding site I when compared to the untreated controls. (B) Treatment with 
Rosiglitazone significantly increased the enrichment of binding site I, which reduced significantly after 
treatment with the antagonist SR202.  N=4, *: Significant V/s control at p<0.05, #: Significant v/s 
Rosiglitazone at p<0.05  

Discussion 

PPARγ mediated upregulation of GCM1 expression was previously reported by Levytska 

et al. in the BeWo choriocarcinoma cell line (150).  Our studies in 1st trimester villous explants 

showed a similar upregulation (Chapter 4, Figure 14A, B).  In silico analysis revealed two 

putative PPARγ binding sites in the GCM1 promoter. In this study, we aimed to extend our 

previous observations by showing that PPARγ increases Gcm1 expression by direct binding to its 

target sites in the GCM1 promoter region. We performed chromatin immunoprecipitation with 

PPARγ and active RNA Pol II antibodies to evaluate if (i) PPARγ physically binds to these target 

sites and (ii) PPARγ binding recruit’s RNA Pol II to the target sites for transcription.  

The JEG-3 cells were treated with PPARγ agonist – Rosiglitazone and antagonist – 

SR202 for 3 hrs. Successful modulation of PPARγ activity post agonist/antagonist treatment was 

validated by assessing the expression of known PPARγ target gene Fabp4.  Like the 

observations made by Levytska et al, treatment with Rosiglitazone significantly upregulated 

Gcm1 expression confirming changes in PPARγ activity due to agonist treatments in our 
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experimental set up (Figure 18).  The chromatin immunoprecipitation assay further showed that 

PPARγ and RNA Pol II bound to both target sites I and II in the GCM1 promoter however, post 

Rosiglitazone treatment the enrichment for site I was significantly higher compared to site II.  

This suggested that PPARγ activation causes preferential binding of PPARγ and recruitment of 

RNA Pol II to target site I.  This also correlated with the increase in Gcm1 expression observed 

in Figure 18.  We also observed that treatment with PPARγ antagonist SR202 significantly 

reduced enrichment of binding site I.  However, we observed that the decreased in PPARγ 

activity did not reduce the expression of Gcm1 suggesting that in JEG-3 cells, the basal 

expression of Gcm1 may be regulated by factors other than PPARγ.  Further, these observations 

were also contrary to the observations made by Levytska et al. in BeWo choriocarcinoma cell 

line further suggesting that trophoblast cell lines might differ in regulation of Gcm1 expression 

and that results obtained should be interpreted with caution.  

Based on previous data and the current study we report that upon activation, PPARγ 

regulates GCM1 expression by preferentially binding to the specific target site I (-21bp upstream 

of transcription start site) in the GCM1 promoter in JEG-3 cells.  Also, in combination with the 

data obtained by Levytska et al our data highlights the need for caution while interpreting 

molecular data from cancerous cell lines and calls for development of better models to study 

trophoblast differentiation. 
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CHAPTER 6 - DEVELOPMENT OF A CULTURE MODEL FOR SIMULTANEOUSLY 
STUDYING PPARγ MEDIATED REGULATION IN EXTRA-VILLOUS AND VILLOUS 

TROPHOBLAST LINEAGE DIFFERENTIATION 

Introduction 

Abnormal trophoblast differentiation has been associated with pathologies like PE – 

affecting 5-8% pregnancies, IUGR – affecting 4-7% pregnancies, GDM – affecting 2-5% 

pregnancies and PTB – that accounted for 9.5% live births in 2015 (61, 62, 343, 344). 

Understanding the molecular basics of placental development and function could provide 

insights into the etiologies of these disorders.  Interestingly, abnormal expression of PPARγ has 

also been reported in cases of IUGR with PE and IUGR (103, 104). PPARγ expression was 

reported to be unaltered in women with PE however significantly lower levels of PPARγ 

activators were reported in their serum (103, 105). These studies highlight a crucial role for 

PPARγ activity in placental pathologies. However, we still lack an understanding of the 

molecular pathways regulated by PPARγ in human placenta.  

In-vitro studies focusing on PPARγ activity in isolated 1st trimester human EVT’s 

showed that treatment with PPARγ agonists reduced invasion, suggesting its negative 

involvement in differentiation towards the EVT lineage (335, 337).  However, a similar study 

with isolated villous trophoblast showed induction of differentiation on treatment with agonists 

(66).  Handschuh et al. showed that PPARγ activation had opposite effects on human chorionic 

gonadotropin (hCG) subunit expression patterns in the villous and extra-villous trophoblast 

(336).  hCG is a critical hormone shown to be involved in proliferation and differentiation 

processes in both trophoblast lineages (310, 330).  Differential regulation of hCG by PPARγ 

suggests specialized role for the receptor in each lineage.  The current study aimed to explore the 

differential role of PPARγ in VT and EVT lineages.  A critical limitation for this aim was 

availability of a suitable culture model.  Most studies evaluating the role of PPARγ in trophoblast 
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cells, rely on the use isolated primary trophoblast cells.  Primary cell models, although generally 

helpful, have the common obstacle that they lack tissue integrity and tend to spontaneously 

differentiate (345, 346).  We therefore aimed to develop a culture model using 1st trimester 

placental explants that would enable simultaneous assessment of both lineages.  The data shown 

here outlines our preliminary work in which we (i) established the culture and treatment 

conditions to ensure maintenance of tissue viability (ii) confirmed the purity of isolated EVT 

fractions by assessing expression of specific markers - Platelet And Endothelial Cell Adhesion 

Molecule 1 (PECAM 1) and Human Leukocyte Antigen-G (HLA-G). 

Materials and Methods 

Tissue collection 

Human first trimester placental tissues (5-7 weeks) were obtained with written informed 

consent from healthy pregnant women following elective termination of pregnancy at the 

Michigan Family planning facility, Michigan, US and Morgentaler Clinic, Toronto, Canada.  The 

Institutional Review Board (IRB) of Wayne State University and Mount Sinai Hospital (MSH) 

Research Ethics Board approved all consent forms and protocols used in this study.  

Placental explant culture 

Individual clusters of 5-7 week villi were dissected under a stereomicroscope and verified 

for the presence of extra-villous trophoblasts (EVT’s) on the villous tips.  These clusters were 

cultured on Millicell-CM inserts (12-mm diameter, 0.4-μm pores; EMD Millipore, MA) pre-

coated with 0.2 mL of undiluted growth factor phenol red -free Matrigel (Corning, MI).  The 

matrigel containing inserts were placed in a 24-well culture plate.  The bottom chamber was 

filled with 300μL DMEM/F12 (Life Technologies, CA) medium supplemented with 10% Fetal 

bovine serum (Atlanta Biologicals) and 1% Anti-Anti (Life Technologies, CA).  The upper 
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chamber contained 200μL of the same medium.  The explants were treated in duplicates by 

supplementing the media with either 10µM Rosiglitazone (Selleckchem, MA) or 1µM of 

T0070907.  The explants were cultured at 3% O2, 37oC for a total of 72 hrs.  Explants that did 

not show visible outgrowth in the first 24 hrs were discarded.  The culture media was replaced 

with fresh media (with respective treatments) every 24 hrs.  The explants were imaged every 24 

hrs to record the outgrowth using Hamamatsu Digital camera and the outgrowths were measured 

using the ImageJ software.  Each treatment was performed in duplicates for every tissue and the 

entire experiment was conducted thrice. At the end of 72 hrs, one replicate was processed for 

RNA extraction and the other for immunohistochemistry.  

Tissue dissection, RNA extraction and qPCR analysis 

To dissect the explants for RNA extraction, media from both the lower chamber and 

Millicell-CM inserts was aspirated.  The inserts were taken and the lower membrane holding the 

matrigel was carefully separated.  The matrigel with the explants was then taken out and 

dissected under a stereomicroscope as outlined in Figure 21. The non-invaded part of the explant 

was considered as enriched VT fraction whereas the invaded part was collected as enriched EVT 

fraction.  Both the VT and EVT fractions were lysed in Qiazol and processed for RNA 

extraction. 

The explants/cells were lysed in 0.9 ml Qiazol (Qiagen, Germany). Total RNA was 

extracted (RNAeasy Plus Universal Mini kit, Qiagen, Germany) and all samples were reverse 

transcribed simultaneously using the RT synthesis kit from Bio-Rad per the manufacturer’s 

protocol (iScript Reverse Transcription Supermix, Bio-Rad Laboratories, CA). Real-time PCR 

was performed on the Bio-Rad CFX384 real time system in triplicates in 10uL total reaction 

volume containing 5 ng of template cDNA, 5µL of SYBR-green master mix (LuminoCT, Sigma-
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Aldrich, MO) and 500nM of primers. The primers used for assessing the expression levels of 

target and housekeeping genes are outlined in Table 6. Data was analyzed using the delta CT 

method as described in Drewlo 2011.  

Table 6: List of primer sequences for gene expression analysis in invaded and floating 
villous trophoblast 

 
Immunohistochemistry 

The explants were fixed (with the matrigel) by adding 4% paraformaldehyde for 10 mins.  

The explants were then dehydrated and paraffin embedded, sectioned at 5µm thickness and 

mounted onto glass slides.  For immunostaining, the sections were rehydrated and de-

paraffinized, followed by antigen retrieval using Dako Target retrieval solution (Agilent, Dako, 

CA).  The intrinsic peroxidase activity was then quenched by incubating the sections with 3% 

peroxide (Fischer Scientific, MA) for 30 mins at RT, followed by 1 wash with 1X PBS.  The 

Gene Name Gene Symbol Sequence 

Cytochrome - C 1 Cyc1 
5'-CAT CAT CAA CAT CTT GAG CC-3' 
5'-CAG ATA GCC AAG GAT GTG TG-3' 

Tyrosine 3-monooxygenase Ywh 
5'-  CCG CCA GGA CAA ACC AGT AT -3' 

5'- ACT TTT GGT ACA TTG TGG CTT CAA -3' 

TATA Box Binding Protein Tbp 
5'-CAC ATC ACA GCT CCC CAC CA-3' 

5'-TGC ACA GGA GCC AAG AGT GAA-3' 

Human Leukocyte Antigen-G Hla-G 
5'-GTG TGG TAC TTT GTC TTG AGG A-3 
5'-AGA GTA GCA GGA AGA GGG TT-3 

Platelet And Endothelial Cell 
Adhesion Molecule 1 

Pecam 1 
5'-CAG GCC CCA TTG TTC CC-3 

5'-ATT GCT CTG GTC ACT TCT CC-3’ 

Figure 21: Illustration showing the separation of VT and EVT parts from cultured explants. 
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sections were then incubated overnight at 4°C with anti-Ki67 antibody (Santa Cruz TX), and 

10μg/ml nonimmune Rabbit IgG (Jackson Immunoresearch, PA) (used as a negative control).  

On the next day, the slides were washed 3 times with 1X PBS containing 0.1% Tween 20 (5 

minutes/wash).  Then the slides were incubated with a peroxidase-conjugated polymer coupled 

to anti-rabbit IgG (EnVision Systems Peroxidase, Agilent, DAKO, CA) for 30 min.  The 

peroxidase was visualized with a 1:1000 dilution of 3,3-diaminobenzidine (DAB, Agilent, 

DAKO, CA) in hydrogen peroxide for 3 min.  The tissue was counterstained with hematoxylin, 

dehydrated and cover slipped. The staining was visualized using Nikon Eclipse 90i 

epifluorescence microscope (Nikon Inc, Japan). 

Results 

Cultured explants contained proliferating cells and were viable at 72 hrs of culture 

We assessed the viability in the cultured explants by immunostaining for Ki67.  The cells 

from both compartments, villous trophoblast (outside the matrigel) and extravillous trophoblast 

(invaded into the matrigel) stained positive for Ki67 indicating that the tissue still maintained 

proliferating cells (Figure 22). 

Figure 22: Immunohistochemistry for Ki-67 
showed presence of proliferating cells in
cultured explants. Representative image 
shows the VT and EVT structures in cultured
explants. The explants stained positive for the
proliferation marker Ki-67. ‘*’ stroma, ‘M’ 
matrigel. 
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The isolated EVT fractions enriched for EVT-specific markers 

We assessed the expression of EVT markers, Pecam1 and Hla-G in both our EVT and 

VT fractions. We observed that the EVT/matrigel fraction had significantly higher expression of 

both Pecam1 and Hla-g when compared to the villous/floating fraction (Figure 23A & B). 

PPARγ antagonist increased invasion 

In preliminary experiments, we assessed the mean outgrowth length in the explants 

treated with PPARγ agonist (Rosiglitazone) and antagonist (T0070907).  The outgrowth index 

was calculated by taking a ratio of the length of outgrowth after 24hr of treatment over the length 

before treatment for each explant.  We observed that after 24hrs of treatment, the outgrowth 

index in Rosiglitazone treated explants was 1.1 + 0.31 (Mean + SD), similar to the 0.9 + 0.3 in 

the control explants (Figure 24A and B).  The outgrowth index in the T0070907 treated explants 

was higher (2.1 + 1.4), however the values did not reach statistical significance. 

Discussion 

In the current study, we aimed to develop a culture model for simultaneous assessment of 

EVT and VT lineages.  Currently used primary culture models suffer from the lack of tissue 

Figure 23: The extra-villous tissue fractions dissected out from matrigel inserts enriched for EVT
markers. The graphs show expression of EVT markers (A)Pecam 1 and (B) Hla-g in villous (VT) and
extra-villous fraction isolated from matrigel cultures. The expression of both markers is significantly
higher in EVT fractions. N=, *: Significant V/s VT at p<0.05. 
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integrity and spontaneous differentiation in culture conditions (346).  Here we cultured early first 

trimester (5-7 weeks of gestational age) villous clusters with visible EVT’s at the tips on matrigel 

for 3 days.  We observed that at the end of the culture period, the tissue still maintained its 

integrity and stained positive for proliferating cells marker Ki-67 (Figure 22).  This suggests that 

the explants were still viable. We suggest a more comprehensive assessment such as analysis of 

apoptotic rate and estimating tissue necrosis would provide further insights into tissue viability.  

A crucial step in the current study was to ensure the precise dissection of explant structures to 

obtain the VT and EVT’s with minimum cross-contamination.  We assessed this by analyzing 

the mRNA expression of two EVT specific markers in both fractions – Pecam1 and Hla-g.  We 

observed that both Pecam1 and Hla-g had significantly higher expression in the isolated EVT 

fraction when compared to the VT fraction.  We suggest a similar analysis of the VT specific 

markers would further help ascertain the purity of isolated lineages.  We also conducted 

preliminary experiments assessing the effects of PPARγ agonist and antagonist on outgrowth in 

B 

Figure 24: PPARγ activation led to
preferential binding and enrichment
of the binding site I in GCM1
promoter. (A) Representative image
shows outgrowth in cultured explants
treated with Rosiglitazone and
T0070907. (B) graph shows the mean
outgrowth index in explants after
Rosiglitazone and T0070907
treatments. N=3. Magnification X20 
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cultured explants.  We observed that while PPARγ agonist did not significantly alter outgrowth, 

treatment with antagonist T0070907 increased it. Similar analysis in more explants would 

provide a concrete conclusion and more definitive answer for the effect of PPARγ on EVT 

outgrowth.  Performing gene expression analysis of EVT and VT fractions isolated after 

agonist/antagonist treatments would further help in understanding role of PPARγ in 

differentiation of trophoblast lineages. 

The current study thus provides the preliminary data towards establishment of a culture 

model for simultaneous assessment of EVT and VT lineages.  Once completely established, the 

model can be used for assessment of molecular cross-talk and pathways involved in EVT/VT 

differentiation as well as placental development.  Further, the model will also help in developing 

and screening therapeutics for intervention in placental dysfunction disorders. 

Limitations of Aim 3 

The current study provides proof for transcriptional regulation of GCM1 expression by 

PPARγ and suggests that PPARγ regulates trophoblast differentiation via GCM1.  However 

further studies are needed to validate both these observations.  Experiments involving site 

specific mutagenesis in GCM1 promoter would further verify the specificity of the PPARγ 

binding at the GCM1 promoter sites.  And GCM1 knockdown experiments would reveal if the 

effects of PPARγ activation on trophoblast differentiation are GCM1 dependent.  The current 

study aslo explored the role of PPARγ in trophoblast differentiation beyond regulation of GCM1 

expression.  It provided preliminary data for development of a unique culture model that would 

enable simultaneous assessment of PPARγ mediated regulation in EVT and VT lineages.  

Further development and analysis of the culture model is needed to validate its use for studying 

differentiation in trophoblast cell lineages. 
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The placenta in mammals forms the maternal fetal interface serving as the source of 

nutrition for the fetus throughout gestation. It comprises of two major trophoblast lineages: (i) 

the decidua invading extra-villous trophoblast (EVT) and (ii) the placenta residing villous 

trophoblast (VT). The EVT’s invade the maternal endometrium to establish pregnancy and 

secure blood-flow to the implantation site. The VT villous trophoblast forms the main maternal-

fetal exchange surface and ensures nutrient and gas exchange to facilitate growth throughout 

pregnancy. Additionally, both lineages are involved in immunological functions such as 

maintaining allogenic tolerance and regulation of immune cell activation at the maternal fetal 

interface. They also express pattern recognition receptors like TLR (toll-like receptors) and NLR 

(Nod-like receptors) involved in pathogen recognition. Activation of these receptors leads to an 

inflammatory cascade aimed at elimination of the pathogen which in severe conditions can lead 

to preterm birth (PTB) and even fetal death. Proper development of trophoblast cells is thus 

crucial for placental function and hence for a successful pregnancy. Indeed, pregnancy disorders 

like pre-eclampsia (PE), intra – uterine growth disorders (IUGR) and preterm birth (PTB) have 

all been associated with abnormal trophoblast differentiation.  Interestingly, elevated levels of 
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systemic as well as placental inflammation is another feature commonly associated with these 

disorders. Localized inflammation (Chorioamnionitis) has been reported to be present in >85% 

spontaneous preterm births even in the absence of systemic inflammation. However, the potential 

effects of inflammatory pathways on placental function (and trophoblast differentiation) remain 

largely unexplored. Consequently, there is also less information available on molecular targets 

common to both these processes that can be used for development of therapeutic interventions.  

The ligand activated transcription factor PPARγ has a known anti-inflammatory role and 

plays a crucial role in placental development. Abnormal levels of the receptor were also 

associated with disorders IUGR associated PE, GDM and even PTB. However, the potential role 

of PPARγ in regulation of the placental and systemic immune responses remains unexplored. 

Our preliminary studies in the mouse model of inflammation induced PTB showed that 

activation of PPARγ significantly reduced PTB and improved both placental and fetal weights. 

The current dissertation therefore aimed to evaluate PPARγ as the potential common link 

between inflammation and placental function. Based on our preliminary results, we hypothesized 

that PPARγ is an important modulator of placental immune responses and is as well involved 

in trophoblast function.   

AIM 1: To determine the molecular mechanism of PPARγ mediated prevention of PTB in 
endotoxin induced PTB mouse model  

In our preliminary studies, we observed that treatment with Rosiglitazone (specific 

agonist for PPARγ) significantly reduced pre-term birth in the mouse model for endotoxin 

(bacterial lipopolysaccharide) mediated inflammatory preterm birth. The current aim was 

designed to evaluate the mechanism involved. Our results revealed that activation of PPARγ via 

Rosiglitazone had anti-inflammatory effects at both systemic and local levels. We also reported 

that the endotoxin (LPS) increases inflammation by upregulating its receptor TLR4 and 
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contributes to oxidative stress by downregulating the anti-oxidant pathway. Rosiglitazone via 

PPARγ activation decreased the inflammatory cytokine levels in serum and downregulated 

activity of NF-κB pathway in macrophages at the maternal-fetal interface. It also upregulated 

expression of anti-oxidant pathway mediators NRF2 and HO-1 and reduced the expression of 

TLR4. We thus report for the first time, that PPARγ activation via Rosiglitazone prevents LPS 

induced preterm birth in mice by acting on inflammatory as well as anti-oxidative pathway. 

AIM 2: To determine the effects of LPS exposure and PPARγ induction on human trophoblast 
physiology  

In our mice studies, we observed that endotoxin treatment caused reduction in placental 

weights suggesting inflammation mediated effects on mouse placenta. Since elevated 

inflammation is associated with approximately 30% of preterm deliveries in humans, we asked if 

inflammation had any effects on human placental function. Previous studies have focused on 

evaluating the inflammatory response of human placental trophoblast cells. However, the effects 

of inflammation on trophoblast cell differentiation and function remain comparatively 

unevaluated. Additionally, the potential anti-inflammatory effect of PPARγ in human placenta 

also remains unexplored.  The current aim was designed to evaluate the effects of endotoxin 

exposure on the human trophoblast cell differentiation and function and the potential role of 

PPARγ in reversing these effects. Our results showed for the first time that inflammation alters 

trophoblast cell differentiation and function -- by downregulating expression of trophoblast 

differentiation proteins GCM1 and CG-β and reducing invasion -- which can be reversed by 

PPARγ activation. 

AIM 3: To determine the role of PPARγ in differentiation of EVT and VT trophoblast lineages. 

The data obtained in Aim 1 and Aim 2 highlighted the key role for anti-inflammatory 

activity of PPARγ in placental function and pregnancy in general. However, PPARγ is 
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implicated to be involved in placental development via pathways beyond inflammation. Previous 

studies and results presented in chapter 4 suggested a key role for PPARγ in trophoblast 

differentiation via regulation of GCM1 – transcription factor crucial for differentiation towards 

both trophoblast lineages. The first part of Aim 3 therefore focused on validating the PPARγ – 

GCM1 molecular axis. Our results showed that PPARγ transcriptionally regulated GCM1 

expression by binding to its specific binding site in the GCM1 promoter.  The second part of 

Aim 3 was designed to further delineate the role of PPARγ in differentiation towards the VT and 

EVT lineages. A crucial initial step was to develop a model to simultaneously study both 

lineages. In the current study, we established the model and conducted preliminary experiments 

for determining the specific role of PPARγ in trophoblast lineage differentiation. 
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